Spaces:
Sleeping
Sleeping
import os | |
import requests | |
import streamlit as st | |
from dotenv import load_dotenv | |
# Load environment variables from the .env file | |
load_dotenv() | |
# Get the Gemini API key from the .env file | |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") | |
if GEMINI_API_KEY is None: | |
st.error("API key not found! Please set the GEMINI_API_KEY in your .env file.") | |
st.stop() | |
# Define the 3 questions for mood analysis | |
questions = [ | |
"How are you feeling today in one word?", | |
"What's currently on your mind?", | |
"Do you feel calm or overwhelmed right now?", | |
] | |
# Function to query the Gemini API | |
def query_gemini_api(user_answers): | |
url = f'https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key={GEMINI_API_KEY}' | |
headers = {'Content-Type': 'application/json'} | |
# Prepare the payload with user answers | |
input_text = " ".join(user_answers) # Combining all answers into one input text | |
payload = { | |
"contents": [ | |
{ | |
"parts": [ | |
{"text": input_text} | |
] | |
} | |
] | |
} | |
try: | |
# Send the request to the Gemini API | |
response = requests.post(url, headers=headers, json=payload) | |
# Log the response for debugging | |
print(f"Status Code: {response.status_code}") # Log the status code | |
print(f"Response Text: {response.text}") # Log the response text | |
# Check if the API call is successful | |
if response.status_code == 200: | |
result = response.json() | |
# Check if the response contains valid mood and recommendations | |
mood = result.get("mood", None) | |
recommendations = result.get("recommendations", None) | |
if mood and recommendations: | |
return mood, recommendations | |
else: | |
st.error("No mood or recommendations found in the response.") | |
return None, None | |
else: | |
st.error(f"API Error {response.status_code}: {response.text}") | |
return None, None | |
except requests.exceptions.RequestException as e: | |
st.error(f"An error occurred: {e}") | |
return None, None | |
# Streamlit app for collecting answers | |
def main(): | |
st.title("Mood Analysis and Suggestions") | |
st.write("Answer the following 3 questions to help us understand your mood:") | |
# Collect responses from the user | |
responses = [] | |
for i, question in enumerate(questions): | |
response = st.text_input(f"{i+1}. {question}") | |
if response: | |
responses.append(response) | |
# If all 3 responses are collected, send them to Gemini for analysis | |
if len(responses) == len(questions): | |
st.write("Processing your answers...") | |
# Get mood and recommendations from Gemini API | |
mood, recommendations = query_gemini_api(responses) | |
if mood and recommendations: | |
# Display the detected mood | |
st.write(f"Detected Mood: {mood}") | |
# Display the recommendations | |
st.write("### Recommendations to Improve Your Mood:") | |
for recommendation in recommendations: | |
st.write(f"- {recommendation}") | |
else: | |
# If no valid mood or recommendations are found, show a message | |
st.warning("Could not generate mood analysis. Please try again later.") | |
else: | |
st.write("Please answer all 3 questions to receive suggestions.") | |
if __name__ == "__main__": | |
main() | |