Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from functools import lru_cache
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
from imgutils.data import load_image
|
9 |
+
from imgutils.utils import open_onnx_model
|
10 |
+
|
11 |
+
_MODELS = [
|
12 |
+
('nsfwjs.onnx', 224),
|
13 |
+
('inception_v3.onnx', 299),
|
14 |
+
]
|
15 |
+
_MODEL_NAMES = [name for name, _ in _MODELS]
|
16 |
+
_DEFAULT_MODEL_NAME = _MODEL_NAMES[0]
|
17 |
+
_MODEL_TO_SIZE = dict(_MODELS)
|
18 |
+
|
19 |
+
|
20 |
+
@lru_cache()
|
21 |
+
def _onnx_model(name):
|
22 |
+
return open_onnx_model(hf_hub_download(
|
23 |
+
'deepghs/imgutils-models',
|
24 |
+
f'nsfw/{name}'
|
25 |
+
))
|
26 |
+
|
27 |
+
|
28 |
+
def _image_preprocess(image, size: int = 224) -> np.ndarray:
|
29 |
+
image = load_image(image, mode='RGB').resize((size, size), Image.NEAREST)
|
30 |
+
return (np.array(image) / 255.0)[None, ...]
|
31 |
+
|
32 |
+
|
33 |
+
_LABELS = ['drawings', 'hentai', 'neutral', 'porn', 'sexy']
|
34 |
+
|
35 |
+
|
36 |
+
def predict(image, model_name):
|
37 |
+
input_ = _image_preprocess(image, _MODEL_TO_SIZE[model_name]).astype(np.float32)
|
38 |
+
output_, = _onnx_model(model_name).run(['dense_3'], {'input_1': input_})
|
39 |
+
return dict(zip(_LABELS, map(float, output_[0])))
|
40 |
+
|
41 |
+
|
42 |
+
if __name__ == '__main__':
|
43 |
+
with gr.Blocks() as demo:
|
44 |
+
with gr.Row():
|
45 |
+
with gr.Column():
|
46 |
+
gr_input_image = gr.Image(type='pil', label='Original Image')
|
47 |
+
gr_model = gr.Dropdown(_MODEL_NAMES, value=_DEFAULT_MODEL_NAME, label='Model')
|
48 |
+
gr_btn_submit = gr.Button(value='Tagging', variant='primary')
|
49 |
+
|
50 |
+
with gr.Column():
|
51 |
+
gr_ratings = gr.Label(label='Ratings')
|
52 |
+
|
53 |
+
gr_btn_submit.click(
|
54 |
+
predict,
|
55 |
+
inputs=[gr_input_image, gr_model],
|
56 |
+
outputs=[gr_ratings],
|
57 |
+
)
|
58 |
+
demo.queue(os.cpu_count()).launch()
|