tamizh-me commited on
Commit
ef33cc8
·
verified ·
1 Parent(s): b5e4f91

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +83 -0
app.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ os.environ["ANTHROPIC_API_KEY"] = "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"
4
+ import gradio as gr
5
+ from langchain.memory import ConversationBufferMemory
6
+ from langchain.chains import RetrievalQA
7
+ from langchain.embeddings import HuggingFaceEmbeddings
8
+ from langchain.vectorstores import Chroma
9
+ from langchain.chat_models import ChatAnthropic
10
+
11
+ model_kwargs = {'trust_remote_code': True}
12
+ embeddings = HuggingFaceEmbeddings(model_name="jinaai/jina-embeddings-v2-base-en",
13
+ model_kwargs=model_kwargs)
14
+ llm = ChatAnthropic(model='claude-2',
15
+ temperature=0)
16
+
17
+ # Load the persisted Chroma database
18
+ persist_directory='/Electric_Machinerydb'
19
+ embeddings = embeddings
20
+ chroma_db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
21
+ retriever = chroma_db.as_retriever(search_kwargs={"k": 3}, return_source_documents=True)
22
+
23
+ # Initialize ConversationBufferMemory
24
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True, input_key="query", output_key="result")
25
+
26
+ # Create a question-answering chain using the retriever
27
+ qa_chain = RetrievalQA.from_chain_type(
28
+ llm=llm,
29
+ chain_type="stuff",
30
+ retriever=retriever,
31
+ return_source_documents=True,
32
+ memory=memory,
33
+ output_key="result" # Specify the output key
34
+ )
35
+
36
+ # Gradio app
37
+ def ask_question(question, chat_history):
38
+ query = question.strip()
39
+ if query:
40
+ result = qa_chain({"query": query})
41
+ answer = result['result']
42
+ chat_history.append((query, answer))
43
+ metadata = show_metadata(chat_history)
44
+ return "", chat_history, metadata
45
+ else:
46
+ chat_history.append(("", "Please enter a question."))
47
+ return "", chat_history, ""
48
+
49
+ def show_metadata(chat_history):
50
+ if chat_history:
51
+ query, answer = chat_history[-1]
52
+ result = qa_chain({"query": query})
53
+ metadata = ""
54
+ for doc in result['source_documents']:
55
+ metadata += f"Page: {doc.metadata['page']}\n"
56
+ metadata += f"Source: {doc.metadata['source']}\n"
57
+ metadata += f"Content: {doc.page_content}\n"
58
+ metadata += "---\n"
59
+ return metadata
60
+ return ""
61
+
62
+ def clean_history():
63
+ memory.clear()
64
+ return [], "", ""
65
+
66
+ with gr.Blocks() as demo:
67
+ gr.Markdown("# Electric Machinery QA by Tamil")
68
+
69
+ with gr.Row():
70
+ with gr.Column(scale=2):
71
+ question = gr.Textbox(label="Question")
72
+ ask_btn = gr.Button("Ask")
73
+ clean_btn = gr.Button("Clean")
74
+ chatbot = gr.Chatbot(label="Conversation")
75
+
76
+ with gr.Column(scale=1):
77
+ gr.Markdown("## Metadata")
78
+ metadata_output = gr.Textbox(label="Source Information", lines=10)
79
+
80
+ ask_btn.click(ask_question, inputs=[question, chatbot], outputs=[question, chatbot, metadata_output])
81
+ clean_btn.click(clean_history, inputs=[], outputs=[chatbot, question, metadata_output])
82
+
83
+ demo.launch()