Spaces:
Running
Running
File size: 22,321 Bytes
e6c15c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
#!/usr/bin/env python3
"""
Alternative Data Modeling Script for HockeyFood Database
Supports multiple connection methods and provides fallback options
"""
import os
import json
from dotenv import load_dotenv
from typing import Dict, List, Any, Optional
import logging
from datetime import datetime
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Load environment variables
load_dotenv()
class DatabaseModelerAlternative:
def __init__(self):
self.server = os.getenv("DB_SERVER")
self.database = os.getenv("DB_DATABASE")
self.username = os.getenv("DB_USER")
self.password = os.getenv("DB_PASSWORD")
self.encrypt = os.getenv("DB_ENCRYPT", "true").lower() == "true"
self.trust_cert = os.getenv("DB_TRUST_SERVER_CERTIFICATE", "true").lower() == "true"
if not all([self.server, self.database, self.username, self.password]):
raise ValueError("Missing required database connection parameters in .env file")
self.connection = None
self.data_model = {}
def try_pymssql_connection(self):
"""Try connecting using pymssql (alternative to pyodbc)"""
try:
import pymssql
self.connection = pymssql.connect(
server=self.server,
user=self.username,
password=self.password,
database=self.database,
timeout=30,
as_dict=True
)
logging.info(f"Successfully connected to database using pymssql: {self.database}")
return True
except ImportError:
logging.warning("pymssql not available. Install with: pip install pymssql")
return False
except Exception as e:
logging.error(f"pymssql connection failed: {str(e)}")
return False
def try_sqlalchemy_connection(self):
"""Try connecting using SQLAlchemy with different drivers"""
try:
from sqlalchemy import create_engine, text
import urllib.parse
# URL-encode the password
password_encoded = urllib.parse.quote_plus(self.password)
# Try different connection strings
connection_strings = [
f"mssql+pyodbc://{self.username}:{password_encoded}@{self.server}/{self.database}?driver=ODBC+Driver+17+for+SQL+Server&Encrypt=yes&TrustServerCertificate=yes",
f"mssql+pyodbc://{self.username}:{password_encoded}@{self.server}/{self.database}?driver=ODBC+Driver+18+for+SQL+Server&Encrypt=yes&TrustServerCertificate=yes",
f"mssql+pymssql://{self.username}:{password_encoded}@{self.server}/{self.database}",
]
for conn_str in connection_strings:
try:
engine = create_engine(conn_str)
connection = engine.connect()
# Test the connection
result = connection.execute(text("SELECT 1"))
self.connection = connection
self.engine = engine
logging.info(f"Successfully connected using SQLAlchemy: {self.database}")
return True
except Exception as e:
logging.debug(f"SQLAlchemy connection attempt failed: {str(e)}")
continue
return False
except ImportError:
logging.warning("SQLAlchemy not available. Install with: pip install sqlalchemy")
return False
except Exception as e:
logging.error(f"SQLAlchemy connection failed: {str(e)}")
return False
def connect(self):
"""Try multiple connection methods"""
connection_methods = [
("pymssql", self.try_pymssql_connection),
("sqlalchemy", self.try_sqlalchemy_connection),
]
for method_name, method in connection_methods:
logging.info(f"Trying {method_name} connection...")
if method():
self.connection_method = method_name
return True
logging.error("All connection methods failed")
return False
def disconnect(self):
"""Close database connection"""
if self.connection:
self.connection.close()
logging.info("Database connection closed")
def execute_query(self, query: str, params: tuple = None):
"""Execute a query using the established connection"""
try:
if self.connection_method == "pymssql":
cursor = self.connection.cursor()
cursor.execute(query, params or ())
return cursor.fetchall()
elif self.connection_method == "sqlalchemy":
from sqlalchemy import text
result = self.connection.execute(text(query), params or {})
return [dict(row._mapping) for row in result]
except Exception as e:
logging.error(f"Query execution failed: {str(e)}")
return []
def get_all_tables(self) -> List[str]:
"""Get list of all tables in the database"""
try:
query = """
SELECT TABLE_SCHEMA, TABLE_NAME
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_TYPE = 'BASE TABLE'
ORDER BY TABLE_NAME
"""
results = self.execute_query(query)
if self.connection_method == "pymssql":
# Store schema info for later use
self.table_schemas = {row['TABLE_NAME']: row['TABLE_SCHEMA'] for row in results}
tables = [row['TABLE_NAME'] for row in results]
else:
self.table_schemas = {row['TABLE_NAME']: row['TABLE_SCHEMA'] for row in results}
tables = [row['TABLE_NAME'] for row in results]
logging.info(f"Found {len(tables)} tables in database")
return tables
except Exception as e:
logging.error(f"Error getting tables: {str(e)}")
return []
def get_table_schema(self, table_name: str) -> Dict[str, Any]:
"""Get detailed schema information for a table"""
try:
# Get column information
query = """
SELECT
COLUMN_NAME,
DATA_TYPE,
IS_NULLABLE,
COLUMN_DEFAULT,
CHARACTER_MAXIMUM_LENGTH,
NUMERIC_PRECISION,
NUMERIC_SCALE,
ORDINAL_POSITION
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = %s
ORDER BY ORDINAL_POSITION
"""
if self.connection_method == "sqlalchemy":
query = query.replace("%s", ":table_name")
results = self.execute_query(query, {"table_name": table_name})
else:
results = self.execute_query(query, (table_name,))
columns = []
for row in results:
columns.append({
'name': row['COLUMN_NAME'],
'data_type': row['DATA_TYPE'],
'nullable': row['IS_NULLABLE'] == 'YES',
'default': row['COLUMN_DEFAULT'],
'max_length': row['CHARACTER_MAXIMUM_LENGTH'],
'precision': row['NUMERIC_PRECISION'],
'scale': row['NUMERIC_SCALE'],
'position': row['ORDINAL_POSITION']
})
# Get primary keys
pk_query = """
SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
WHERE TABLE_NAME = %s AND CONSTRAINT_NAME LIKE 'PK_%'
"""
if self.connection_method == "sqlalchemy":
pk_query = pk_query.replace("%s", ":table_name")
pk_results = self.execute_query(pk_query, {"table_name": table_name})
else:
pk_results = self.execute_query(pk_query, (table_name,))
primary_keys = [row['COLUMN_NAME'] for row in pk_results]
# Get foreign keys - Using sys tables for Azure SQL compatibility
fk_query = """
SELECT
c1.name as COLUMN_NAME,
OBJECT_NAME(fk.referenced_object_id) as REFERENCED_TABLE_NAME,
c2.name as REFERENCED_COLUMN_NAME
FROM sys.foreign_keys fk
JOIN sys.foreign_key_columns fkc ON fk.object_id = fkc.constraint_object_id
JOIN sys.columns c1 ON fkc.parent_object_id = c1.object_id AND fkc.parent_column_id = c1.column_id
JOIN sys.columns c2 ON fkc.referenced_object_id = c2.object_id AND fkc.referenced_column_id = c2.column_id
JOIN sys.tables t ON fk.parent_object_id = t.object_id
WHERE t.name = %s
"""
if self.connection_method == "sqlalchemy":
fk_query = fk_query.replace("%s", ":table_name")
fk_results = self.execute_query(fk_query, {"table_name": table_name})
else:
fk_results = self.execute_query(fk_query, (table_name,))
foreign_keys = []
for row in fk_results:
foreign_keys.append({
'column': row['COLUMN_NAME'],
'referenced_table': row['REFERENCED_TABLE_NAME'],
'referenced_column': row['REFERENCED_COLUMN_NAME']
})
return {
'columns': columns,
'primary_keys': primary_keys,
'foreign_keys': foreign_keys
}
except Exception as e:
logging.error(f"Error getting schema for table {table_name}: {str(e)}")
return {}
def get_table_data_insights(self, table_name: str, sample_size: int = 100) -> Dict[str, Any]:
"""Get data insights for a table including sample data and statistics"""
try:
# Get the correct schema for the table
schema_name = getattr(self, 'table_schemas', {}).get(table_name, 'dbo')
full_table_name = f"[{schema_name}].[{table_name}]"
# Get row count with proper schema qualification
count_query = f"SELECT COUNT(*) as row_count FROM {full_table_name}"
count_results = self.execute_query(count_query)
row_count = count_results[0]['row_count'] if count_results else 0
# Get sample data with proper schema qualification
sample_query = f"SELECT TOP {sample_size} * FROM {full_table_name}"
sample_results = self.execute_query(sample_query)
# Convert sample data to list of dictionaries
sample_data = []
for row in sample_results[:10]: # Limit to first 10 rows
sample_data.append({k: str(v) if v is not None else None for k, v in row.items()})
# Get basic column statistics (simplified)
data_analysis = {}
if sample_results:
columns = list(sample_results[0].keys())
for column in columns:
try:
# Basic analysis for each column with proper schema qualification
col_query = f"""
SELECT
COUNT(*) as total_count,
COUNT([{column}]) as non_null_count,
COUNT(DISTINCT [{column}]) as distinct_count
FROM {full_table_name}
"""
col_results = self.execute_query(col_query)
if col_results:
result = col_results[0]
data_analysis[column] = {
'total_count': result['total_count'],
'non_null_count': result['non_null_count'],
'distinct_count': result['distinct_count'],
'null_percentage': round((result['total_count'] - result['non_null_count']) / result['total_count'] * 100, 2) if result['total_count'] > 0 else 0
}
except Exception as e:
logging.warning(f"Could not analyze column {column} in table {table_name}: {str(e)}")
data_analysis[column] = {'error': str(e)}
return {
'row_count': row_count,
'sample_data': sample_data,
'data_analysis': data_analysis
}
except Exception as e:
logging.error(f"Error getting data insights for table {table_name}: {str(e)}")
return {}
def analyze_relationships(self) -> Dict[str, Any]:
"""Analyze relationships between tables"""
try:
# Simplified query for Azure SQL - use sys tables instead of INFORMATION_SCHEMA
query = """
SELECT
OBJECT_NAME(fk.parent_object_id) as source_table,
c1.name as source_column,
OBJECT_NAME(fk.referenced_object_id) as target_table,
c2.name as target_column,
fk.name as constraint_name
FROM sys.foreign_keys fk
JOIN sys.foreign_key_columns fkc ON fk.object_id = fkc.constraint_object_id
JOIN sys.columns c1 ON fkc.parent_object_id = c1.object_id AND fkc.parent_column_id = c1.column_id
JOIN sys.columns c2 ON fkc.referenced_object_id = c2.object_id AND fkc.referenced_column_id = c2.column_id
ORDER BY source_table
"""
results = self.execute_query(query)
relationships = []
for row in results:
relationships.append({
'source_table': row['source_table'],
'source_column': row['source_column'],
'target_table': row['target_table'],
'target_column': row['target_column'],
'constraint_name': row['constraint_name']
})
return {'relationships': relationships}
except Exception as e:
logging.error(f"Error analyzing relationships: {str(e)}")
return {}
def build_comprehensive_data_model(self, focus_tables: List[str] = None):
"""Build comprehensive data model for the entire database"""
if not self.connect():
return
try:
tables = self.get_all_tables()
if focus_tables:
# Filter to focus tables if they exist
available_focus_tables = [t for t in focus_tables if t in tables]
if available_focus_tables:
tables = available_focus_tables
logging.info(f"Focusing on tables: {available_focus_tables}")
else:
logging.warning(f"Focus tables {focus_tables} not found. Analyzing all tables.")
logging.info(f"Available tables: {tables}")
self.data_model = {
'database_info': {
'name': self.database,
'server': self.server,
'connection_method': self.connection_method,
'analysis_date': datetime.now().isoformat(),
'total_tables': len(tables),
'analyzed_tables': tables
},
'tables': {},
'relationships': self.analyze_relationships()
}
# Analyze each table
for table_name in tables:
logging.info(f"Analyzing table: {table_name}")
self.data_model['tables'][table_name] = {
'schema': self.get_table_schema(table_name),
'data_insights': self.get_table_data_insights(table_name)
}
logging.info("Data model analysis completed successfully")
except Exception as e:
logging.error(f"Error building data model: {str(e)}")
finally:
self.disconnect()
def export_data_model(self, filename: str = None):
"""Export data model to JSON file"""
if not filename:
filename = f"hockey_db_data_model_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
try:
with open(filename, 'w', encoding='utf-8') as f:
json.dump(self.data_model, f, indent=2, ensure_ascii=False)
logging.info(f"Data model exported to: {filename}")
return filename
except Exception as e:
logging.error(f"Error exporting data model: {str(e)}")
return None
def generate_summary_report(self) -> str:
"""Generate a human-readable summary report"""
if not self.data_model:
return "No data model available. Run build_comprehensive_data_model() first."
report = []
report.append("=" * 60)
report.append("HOCKEY DATABASE DATA MODEL SUMMARY")
report.append("=" * 60)
report.append(f"Database: {self.data_model['database_info']['name']}")
report.append(f"Server: {self.data_model['database_info']['server']}")
report.append(f"Connection Method: {self.data_model['database_info']['connection_method']}")
report.append(f"Analysis Date: {self.data_model['database_info']['analysis_date']}")
report.append(f"Total Tables Analyzed: {self.data_model['database_info']['total_tables']}")
report.append(f"Tables: {', '.join(self.data_model['database_info']['analyzed_tables'])}")
report.append("")
# Table summaries
report.append("TABLE SUMMARIES:")
report.append("-" * 40)
for table_name, table_data in self.data_model['tables'].items():
report.append(f"\nπ TABLE: {table_name}")
schema = table_data.get('schema', {})
insights = table_data.get('data_insights', {})
if schema.get('columns'):
report.append(f" Columns: {len(schema['columns'])}")
report.append(f" Primary Keys: {', '.join(schema.get('primary_keys', []))}")
if schema.get('foreign_keys'):
report.append(" Foreign Keys:")
for fk in schema['foreign_keys']:
report.append(f" - {fk['column']} β {fk['referenced_table']}.{fk['referenced_column']}")
if insights.get('row_count') is not None:
report.append(f" Total Rows: {insights['row_count']:,}")
# Column details
if schema.get('columns'):
report.append(" Column Details:")
for col in schema['columns'][:5]: # Show first 5 columns
nullable = "NULL" if col['nullable'] else "NOT NULL"
report.append(f" - {col['name']}: {col['data_type']} {nullable}")
if len(schema['columns']) > 5:
report.append(f" ... and {len(schema['columns']) - 5} more columns")
# Sample data
if insights.get('sample_data'):
report.append(" Sample Data (first 3 rows):")
for i, row in enumerate(insights['sample_data'][:3]):
report.append(f" Row {i+1}: {row}")
# Relationships
relationships = self.data_model.get('relationships', {}).get('relationships', [])
if relationships:
report.append(f"\nπ DATABASE RELATIONSHIPS ({len(relationships)} total):")
report.append("-" * 40)
for rel in relationships:
report.append(f" {rel['source_table']}.{rel['source_column']} β {rel['target_table']}.{rel['target_column']}")
return "\n".join(report)
def install_dependencies():
"""Install required dependencies"""
import subprocess
import sys
packages = ['pymssql', 'sqlalchemy']
for package in packages:
try:
subprocess.check_call([sys.executable, '-m', 'pip', 'install', package])
print(f"Successfully installed {package}")
except subprocess.CalledProcessError:
print(f"Failed to install {package}")
def main():
"""Main function to run the data modeling analysis"""
try:
# Try to install dependencies
install_dependencies()
# Focus on specific tables mentioned in HockeyFood_DB.md
focus_tables = ['Exercise', 'Multimedia', 'Serie']
modeler = DatabaseModelerAlternative()
logging.info("Starting comprehensive database analysis...")
# Build the data model
modeler.build_comprehensive_data_model(focus_tables=focus_tables)
# Export to JSON
json_file = modeler.export_data_model()
# Generate and save summary report
summary = modeler.generate_summary_report()
summary_file = f"hockey_db_summary_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt"
with open(summary_file, 'w', encoding='utf-8') as f:
f.write(summary)
print(summary)
print(f"\nπ Files generated:")
print(f" - JSON Data Model: {json_file}")
print(f" - Summary Report: {summary_file}")
except Exception as e:
logging.error(f"Main execution error: {str(e)}")
print(f"Error: {str(e)}")
if __name__ == "__main__":
main() |