talhasideline commited on
Commit
42e38aa
Β·
verified Β·
1 Parent(s): 0822321

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +157 -55
app.py CHANGED
@@ -1,64 +1,166 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
 
 
2
  """
3
+ Hockey Mind AI Chatbot - Fixed Gradio Interface for Hugging Face Spaces
4
  """
5
+ import gradio as gr
6
+ import asyncio
7
+ import os
8
+ from dotenv import load_dotenv
9
+ from OpenAPI_DB import agentic_hockey_chat
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ # Load environment variables
12
+ load_dotenv()
 
 
 
 
 
 
13
 
14
+ # Global variable to track if resources are loaded
15
+ resources_loaded = False
16
 
17
+ async def chat_interface(user_role, user_team, user_prompt):
18
+ """Interface function for Gradio"""
19
+ global resources_loaded
20
+
21
+ try:
22
+ # Load resources on first use to save memory
23
+ if not resources_loaded:
24
+ try:
25
+ from OpenAPI_DB import load_resources
26
+ load_resources()
27
+ resources_loaded = True
28
+ except ImportError as import_err:
29
+ return f"Import Error: {str(import_err)}. Please check if all required packages are installed.", "Unable to load ML models."
30
+
31
+ # Call the main chat function
32
+ result = await agentic_hockey_chat(user_role, user_team, user_prompt)
33
+
34
+ # Format response for Gradio
35
+ ai_response = result.get('ai_response', 'Sorry, no response generated.')
36
+ recommendations = result.get('recommended_content_details', [])
37
+
38
+ # Format recommendations as HTML
39
+ rec_html = ""
40
+ if recommendations:
41
+ rec_html = "<h3>πŸ’ Recommended Videos:</h3><ul>"
42
+ for rec in recommendations[:5]:
43
+ title = rec.get('title', 'No title')
44
+ url = rec.get('url', '#')
45
+ similarity = rec.get('similarity', 0)
46
+ rec_html += f"<li><a href='{url}' target='_blank'>{title}</a> (Similarity: {similarity:.3f})</li>"
47
+ rec_html += "</ul>"
48
+
49
+ return ai_response, rec_html
50
+
51
+ except Exception as e:
52
+ import traceback
53
+ error_details = traceback.format_exc()
54
+ return f"Error: {str(e)}\n\nDetails:\n{error_details}", "No recommendations available due to error."
55
 
56
+ def sync_chat_interface(user_role, user_team, user_prompt):
57
+ """Synchronous wrapper for Gradio"""
58
+ return asyncio.run(chat_interface(user_role, user_team, user_prompt))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
+ # Gradio Interface
61
+ with gr.Blocks(
62
+ title="πŸ’ Hockey Mind AI Chatbot",
63
+ theme=gr.themes.Soft(),
64
+ css="""
65
+ .gradio-container {max-width: 800px !important; margin: auto !important;}
66
+ .main-header {text-align: center; margin-bottom: 2rem;}
67
+ """
68
+ ) as demo:
69
+
70
+ gr.HTML("""
71
+ <div class="main-header">
72
+ <h1>πŸ’ Hockey Mind AI Chatbot</h1>
73
+ <p>Get personalized hockey advice and video recommendations!</p>
74
+ <p><i>Optimized for field hockey coaching, training, and player development</i></p>
75
+ </div>
76
+ """)
77
+
78
+ with gr.Row():
79
+ with gr.Column():
80
+ user_role = gr.Dropdown(
81
+ choices=["le Trainer", "le Coach", "Speler"],
82
+ label="Your Role πŸ‘€",
83
+ value="Coach"
84
+ )
85
+
86
+ user_team = gr.Textbox(
87
+ label="Team/Level πŸ’",
88
+ placeholder="e.g., U8C, Toronto Maple Leafs, Beginner",
89
+ value="U10"
90
+ )
91
+
92
+ user_prompt = gr.Textbox(
93
+ label="Your Question ❓",
94
+ placeholder="Ask about drills, techniques, strategies, rules...",
95
+ lines=3
96
+ )
97
+
98
+ submit_btn = gr.Button("Get Hockey Advice πŸš€", variant="primary", size="lg")
99
+
100
+ with gr.Row():
101
+ ai_response = gr.Textbox(
102
+ label="πŸ€– AI Response",
103
+ lines=8,
104
+ interactive=False
105
+ )
106
+
107
+ with gr.Row():
108
+ recommendations = gr.HTML()
109
+
110
+ # Examples section
111
+ gr.HTML("<br><h3>πŸ’‘ Example Questions:</h3>")
112
+
113
+ examples = gr.Examples(
114
+ examples=[
115
+ ["Coach", "U8C", "What are the best backhand shooting drills for young players?"],
116
+ ["Player", "Intermediate", "How can I improve my penalty corner technique?"],
117
+ ["le Coach", "U10", "Geef me oefeningen voor backhandschoten"],
118
+ ["Parent", "Beginner", "What equipment does my child need to start playing hockey?"],
119
+ ["Coach", "Advanced", "What are effective small-sided games for skill development?"],
120
+ ],
121
+ inputs=[user_role, user_team, user_prompt],
122
+ outputs=[ai_response, recommendations],
123
+ fn=sync_chat_interface,
124
+ )
125
+
126
+ # Event handler
127
+ submit_btn.click(
128
+ fn=sync_chat_interface,
129
+ inputs=[user_role, user_team, user_prompt],
130
+ outputs=[ai_response, recommendations],
131
+ api_name="chat"
132
+ )
133
+
134
+ user_prompt.submit(
135
+ fn=sync_chat_interface,
136
+ inputs=[user_role, user_team, user_prompt],
137
+ outputs=[ai_response, recommendations]
138
+ )
139
+
140
+ # Footer
141
+ gr.HTML("""
142
+ <br>
143
+ <div style="text-align: center; color: #666; font-size: 0.9em;">
144
+ <p>πŸ’ Hockey Mind AI - Powered by OpenRouter & Sentence Transformers</p>
145
+ <p>Supports English & Dutch | Built for field hockey community</p>
146
+ </div>
147
+ """)
148
 
149
+ # Launch configuration for Hugging Face Spaces
150
  if __name__ == "__main__":
151
+ # Check if running on Hugging Face Spaces
152
+ if os.getenv("SPACE_ID"):
153
+ # Production mode on HF Spaces
154
+ demo.launch(
155
+ server_name="0.0.0.0",
156
+ server_port=7860,
157
+ share=False,
158
+ show_error=True,
159
+ quiet=False
160
+ )
161
+ else:
162
+ # Local development mode
163
+ demo.launch(
164
+ share=True,
165
+ show_error=True
166
+ )