File size: 24,674 Bytes
5aa9e8d
 
 
 
 
 
 
 
 
4993857
 
 
 
 
 
5aa9e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45c1ff6
 
5aa9e8d
 
4993857
 
 
 
5aa9e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4993857
 
 
5aa9e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4993857
5aa9e8d
 
 
 
 
 
 
4993857
 
5aa9e8d
 
 
 
 
 
 
4993857
 
 
 
 
 
 
 
 
 
 
 
 
5aa9e8d
 
 
 
 
 
3a0c9fd
 
 
5aa9e8d
 
 
 
 
3a0c9fd
 
 
 
 
 
 
5aa9e8d
 
 
4993857
 
 
 
 
 
 
 
5aa9e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4993857
 
 
 
 
5aa9e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4993857
 
5aa9e8d
 
 
 
 
 
 
4993857
5aa9e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a0c9fd
 
 
 
 
 
 
 
 
 
5aa9e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a0c9fd
 
 
 
5aa9e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a0c9fd
 
 
 
5aa9e8d
 
 
 
 
3a0c9fd
5aa9e8d
 
 
 
 
 
 
 
 
 
45c1ff6
 
 
5aa9e8d
45c1ff6
5aa9e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
4993857
 
 
 
 
 
 
5aa9e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45c1ff6
 
 
 
 
 
 
5aa9e8d
 
 
 
3a0c9fd
5aa9e8d
 
 
 
3a0c9fd
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import logging
import os
import re
import faiss
import numpy as np
from dotenv import load_dotenv
import httpx
from langdetect import detect
from deep_translator import GoogleTranslator
try:
    import pymssql
    PYMSSQL_AVAILABLE = True
except ImportError:
    PYMSSQL_AVAILABLE = False
    logging.warning("pymssql not available - database features will be limited")
import pickle
import json
from sentence_transformers import SentenceTransformer, util
from tenacity import retry, stop_after_attempt, wait_exponential
from typing import Dict, List, Any, Optional
from datetime import datetime

# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

# Load environment variables
load_dotenv()
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions"

# Database connection parameters
DB_SERVER = os.getenv("DB_SERVER")
DB_DATABASE = os.getenv("DB_DATABASE")
DB_USER = os.getenv("DB_USER")
DB_PASSWORD = os.getenv("DB_PASSWORD")

EMBEDDINGS_PATH = "hockey_embeddings.npy"
METADATA_PATH = "hockey_metadata.json"
INDEX_PATH = "hockey_faiss_index.index"

if not OPENROUTER_API_KEY:
    logging.warning("OPENROUTER_API_KEY not set in environment - API calls will fail")
    # Don't raise error, let it fail gracefully during API calls

if not all([DB_SERVER, DB_DATABASE, DB_USER, DB_PASSWORD]):
    logging.warning("Database connection parameters missing in .env file - running without database")
    DB_AVAILABLE = False
else:
    DB_AVAILABLE = PYMSSQL_AVAILABLE

# In-memory conversation history
conversation_histories = {}

# Lazy-loaded SentenceTransformer and FAISS index
sentence_model = None
faiss_index = None
embeddings_np = None
metadata = []

class HockeyFoodDBConnector:
    def __init__(self):
        self.connection = None
        
    def connect(self):
        """Connect to HockeyFood database using pymssql"""
        if not DB_AVAILABLE:
            logging.info("Database not available - using preloaded embeddings only")
            return False
        try:
            self.connection = pymssql.connect(
                server=DB_SERVER,
                user=DB_USER,
                password=DB_PASSWORD,
                database=DB_DATABASE,
                timeout=30,
                as_dict=True
            )
            logging.info(f"Successfully connected to database: {DB_DATABASE}")
            return True
        except Exception as e:
            logging.error(f"Database connection failed: {str(e)}")
            return False
    
    def disconnect(self):
        """Close database connection"""
        if self.connection:
            self.connection.close()
            logging.info("Database connection closed")
    
    def execute_query(self, query: str, params: tuple = None):
        """Execute a query and return results"""
        try:
            cursor = self.connection.cursor()
            cursor.execute(query, params or ())
            return cursor.fetchall()
        except Exception as e:
            logging.error(f"Query execution failed: {str(e)}")
            return []
    
    def get_exercise_data(self):
        """Get Exercise table data: Title -> Text"""
        query = """
        SELECT Id, Title, Text, InternalTitle, Organisation, Rules
        FROM [Main].[Exercise]
        WHERE DeletedAt IS NULL AND Title IS NOT NULL AND Text IS NOT NULL
        """
        return self.execute_query(query)
    
    def get_serie_data(self):
        """Get Serie table data: Title -> Description"""
        query = """
        SELECT Id, Title, Description
        FROM [Main].[Serie]
        WHERE DeletedAt IS NULL AND Title IS NOT NULL AND Description IS NOT NULL
        """
        return self.execute_query(query)
    
    def get_multimedia_data(self):
        """Get Multimedia table data: Title -> URL"""
        query = """
        SELECT Id, Title, Url, Description
        FROM [Media].[Multimedia]
        WHERE Title IS NOT NULL AND Url IS NOT NULL
        """
        return self.execute_query(query)
    
    def get_all_tables(self):
        """Get list of all tables in the database to debug"""
        query = """
        SELECT TABLE_SCHEMA, TABLE_NAME 
        FROM INFORMATION_SCHEMA.TABLES 
        WHERE TABLE_TYPE = 'BASE TABLE'
        ORDER BY TABLE_NAME
        """
        return self.execute_query(query)

def load_resources():
    global sentence_model, faiss_index, embeddings_np, metadata
    
    # Check if running on HuggingFace and adjust behavior
    is_huggingface = os.getenv("SPACE_ID") is not None
    
    if sentence_model is None:
        try:
            sentence_model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
            logging.info("Loaded SentenceTransformer model.")
        except Exception as e:
            if is_huggingface:
                logging.warning(f"Failed to load SentenceTransformer on HuggingFace: {e}")
                sentence_model = None
                return  # Exit gracefully for HuggingFace
            else:
                logging.error(f"Failed to load SentenceTransformer: {e}")
                raise
    
    if faiss_index is None or embeddings_np is None or not metadata:
        if not (os.path.exists(EMBEDDINGS_PATH) and os.path.exists(METADATA_PATH) and os.path.exists(INDEX_PATH)):
            if DB_AVAILABLE:
                logging.info("Generating embeddings from HockeyFood database...")
                generate_embeddings_from_db()
            else:
                logging.warning("No preloaded embeddings found and database not available - running without content recommendations")
                embeddings_np = None
                metadata = []
                faiss_index = None
        else:
            # Load existing embeddings
            embeddings_np = np.load(EMBEDDINGS_PATH)
            with open(METADATA_PATH, "r") as f:
                metadata = json.load(f)
            try:
                faiss_index = faiss.read_index(INDEX_PATH)
            except Exception as e:
                logging.warning(f"Failed to load FAISS index: {e}. Regenerating...")
                dimension = embeddings_np.shape[1]
                faiss_index = faiss.IndexFlatIP(dimension)
                faiss.normalize_L2(embeddings_np)
                faiss_index.add(embeddings_np)
                faiss.write_index(faiss_index, INDEX_PATH)
            logging.info(f"Loaded {embeddings_np.shape[0]} embeddings")

def generate_embeddings_from_db():
    """Generate embeddings from HockeyFood database tables"""
    global embeddings_np, metadata, faiss_index
    
    db_connector = HockeyFoodDBConnector()
    if not db_connector.connect():
        raise RuntimeError("Could not connect to HockeyFood database")
    
    try:
        # First, let's see what tables actually exist
        all_tables = db_connector.get_all_tables()
        table_names = [f"{t.get('TABLE_SCHEMA', '')}.{t.get('TABLE_NAME', '')}" for t in all_tables]
        logging.info(f"Available tables in database: {table_names}")
        
        embeddings = []
        metadata = []
        
        # Process Exercise table (Title -> Text)
        logging.info("Processing Exercise table...")
        exercise_data = db_connector.get_exercise_data()
        for row in exercise_data:
            content = f"{row['Title']}: {row['Text']}"
            if row['Organisation']:
                content += f" Organisation: {row['Organisation']}"
            if row['Rules']:
                content += f" Rules: {row['Rules']}"
            
            embedding = sentence_model.encode(content, convert_to_tensor=False)
            embeddings.append(embedding)
            metadata.append({
                "id": f"exercise_{row['Id']}",
                "type": "exercise",
                "title": row['Title'][:100],
                "content": row['Text'][:200] + "..." if len(row['Text']) > 200 else row['Text'],
                "source_table": "Exercise"
            })
        
        # Process Serie table (Title -> Description)
        logging.info("Processing Serie table...")
        serie_data = db_connector.get_serie_data()
        for row in serie_data:
            content = f"{row['Title']}: {row['Description']}"
            
            embedding = sentence_model.encode(content, convert_to_tensor=False)
            embeddings.append(embedding)
            metadata.append({
                "id": f"serie_{row['Id']}",
                "type": "serie",
                "title": row['Title'][:100],
                "content": row['Description'][:200] + "..." if len(row['Description']) > 200 else row['Description'],
                "source_table": "Serie"
            })
        
        # Process Multimedia table (Title -> URL)
        logging.info("Processing Multimedia table...")
        multimedia_data = db_connector.get_multimedia_data()
        for row in multimedia_data:
            content = f"{row['Title']}"
            if row.get('Description'):
                content += f": {row['Description']}"
            
            embedding = sentence_model.encode(content, convert_to_tensor=False)
            embeddings.append(embedding)
            metadata.append({
                "id": f"multimedia_{row['Id']}",
                "type": "multimedia",
                "title": row['Title'][:100],
                "url": row['Url'],
                "source_table": "Multimedia"
            })
        
        if embeddings:
            embeddings_np = np.array(embeddings, dtype=np.float32)
            dimension = embeddings_np.shape[1]
            faiss_index = faiss.IndexFlatIP(dimension)
            faiss.normalize_L2(embeddings_np)
            faiss_index.add(embeddings_np)
            
            # Save embeddings and metadata
            np.save(EMBEDDINGS_PATH, embeddings_np)
            with open(METADATA_PATH, "w") as f:
                json.dump(metadata, f, indent=2)
            faiss.write_index(faiss_index, INDEX_PATH)
            
            logging.info(f"Generated and saved {len(embeddings)} embeddings from HockeyFood database")
        else:
            logging.error("No valid data found in database tables")
            raise RuntimeError("No valid data found in database tables")
    
    finally:
        db_connector.disconnect()

# Hockey-specific translation dictionary
hockey_translation_dict = {
    "schiettips": "shooting tips",
    "schieten": "shooting",
    "backhand": "backhand",
    "backhandschoten": "backhand shooting",
    "achterhand": "backhand",
    "veldhockey": "field hockey",
    "strafcorner": "penalty corner",
    "sleepflick": "drag flick",
    "doelman": "goalkeeper",
    "aanvaller": "forward",
    "verdediger": "defender",
    "middenvelder": "midfielder",
    "stickbeheersing": "stick handling",
    "balbeheersing": "ball control",
    "hockeyoefeningen": "hockey drills",
    "oefeningen": "drills",
    "kinderen": "kids",
    "verbeteren": "improve"
}

# Hockey keywords for domain detection
hockey_keywords = [
    "hockey", "field hockey", "veldhockey", "match", "wedstrijd", "game", "spel", "goal", "doelpunt",
    "score", "scoren", "ball", "bal", "stick", "hockeystick", "field", "veld", "turf", "kunstgras",
    "shooting", "schieten", "schiet", "backhand shooting", "backhandschoten", "passing", "passen",
    "backhand", "achterhand", "forehand", "voorhand", "drag flick", "sleeppush", "push pass",
    "training", "oefening", "exercise", "oefenen", "drill", "oefensessie", "practice", "praktijk",
    "coach", "trainer", "goalkeeper", "doelman", "keeper", "goalie", "defender", "verdediger",
    "midfielder", "middenvelder", "forward", "aanvaller", "striker", "spits"
]

# Greetings for detection
greetings = [
    "hey", "hello", "hi", "hiya", "yo", "what's up", "sup", "good morning", "good afternoon",
    "good evening", "good night", "howdy", "greetings", "morning", "evening", "hallo", "hoi",
    "goedemorgen", "goedemiddag", "goedenavond", "goedennacht", "hé", "joe", "moi", "dag",
    "goedendag"
]

def preprocess_prompt(prompt: str, user_lang: str) -> tuple[str, str]:
    """Preprocess prompt and return both translated and original prompt"""
    if not prompt or not isinstance(prompt, str):
        return prompt, prompt
    
    prompt_lower = prompt.lower().strip()
    if user_lang == "nl":
        # Apply hockey-specific translations
        for dutch_term, english_term in hockey_translation_dict.items():
            prompt_lower = re.sub(rf'\b{re.escape(dutch_term)}\b', english_term, prompt_lower)
        try:
            translated = GoogleTranslator(source="nl", target="en").translate(prompt_lower)
            return translated if translated else prompt_lower, prompt
        except Exception as e:
            logging.error(f"Translation error: {str(e)}")
            return prompt_lower, prompt
    return prompt_lower, prompt

def is_in_domain(prompt: str) -> bool:
    """Check if prompt is hockey-related"""
    if not prompt or not isinstance(prompt, str):
        return False
    
    prompt_lower = prompt.lower().strip()
    has_hockey_keywords = any(
        re.search(rf'\b{re.escape(word)}\b|\b{re.escape(word[:-1])}\w*\b', prompt_lower)
        for word in hockey_keywords
    )
    
    if sentence_model is not None:
        try:
            prompt_embedding = sentence_model.encode(prompt_lower, convert_to_tensor=True)
            hockey_reference = "Field hockey training, drills, strategies, rules, techniques, or tutorials"
            hockey_embedding = sentence_model.encode(hockey_reference, convert_to_tensor=True)
            similarity = util.cos_sim(prompt_embedding, hockey_embedding).item()
            return has_hockey_keywords or similarity > 0.3
        except Exception as e:
            logging.warning(f"Semantic similarity check failed: {e}")
            pass
    
    return has_hockey_keywords

def is_greeting_or_vague(prompt: str, user_lang: str) -> bool:
    """Check if prompt is a greeting or too vague"""
    if not prompt or not isinstance(prompt, str):
        return True
    
    prompt_lower = prompt.lower().strip()
    is_greeting = any(greeting in prompt_lower for greeting in greetings)
    has_hockey_keywords = any(
        re.search(rf'\b{re.escape(word)}\b|\b{re.escape(word[:-1])}\w*\b', prompt_lower)
        for word in hockey_keywords
    )
    
    return is_greeting and not has_hockey_keywords

@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
def search_hockey_content(english_query: str, dutch_query: str) -> list:
    """Search HockeyFood database content using semantic similarity"""
    if not is_in_domain(english_query):
        logging.info("Query is out of domain, skipping database search.")
        return []
    
    if sentence_model is None or faiss_index is None or not metadata:
        logging.info("Search resources not available, skipping content search.")
        return []
    
    try:
        # Encode query
        english_embedding = sentence_model.encode(english_query, convert_to_tensor=False)
        english_embedding = np.array(english_embedding).astype("float32").reshape(1, -1)
        faiss.normalize_L2(english_embedding)
        
        # Search FAISS index
        distances, indices = faiss_index.search(english_embedding, 5)  # Top 5 results
        
        results = []
        for idx, sim in zip(indices[0], distances[0]):
            if idx < len(metadata) and sim > 0.3:  # Similarity threshold
                item = metadata[idx]
                result = {
                    "title": item["title"],
                    "type": item["type"],
                    "source_table": item["source_table"],
                    "similarity": float(sim)
                }
                
                # Add URL for multimedia items
                if item["type"] == "multimedia" and "url" in item:
                    result["url"] = item["url"]
                else:
                    result["content"] = item.get("content", "")
                
                results.append(result)
        
        logging.info(f"Found {len(results)} relevant content items")
        return results
    
    except Exception as e:
        logging.error(f"Content search error: {e}")
        return []

def get_conversation_history(user_role: str, user_team: str) -> str:
    """Get conversation history for user session"""
    session_key = f"{user_role}|{user_team}"
    history = conversation_histories.get(session_key, [])
    formatted_history = "\n".join([f"User: {q}\nCoach: {a}" for q, a in history[-3:]])
    return formatted_history

def update_conversation_history(user_role: str, user_team: str, question: str, answer: str):
    """Update conversation history for user session"""
    session_key = f"{user_role}|{user_team}"
    history = conversation_histories.get(session_key, [])
    history.append((question, answer))
    conversation_histories[session_key] = history[-3:]

def translate_text(text: str, source_lang: str, target_lang: str) -> str:
    """Translate text between languages"""
    if not text or not isinstance(text, str) or source_lang == target_lang:
        return text
    try:
        translated = GoogleTranslator(source=source_lang, target=target_lang).translate(text)
        return translated
    except Exception as e:
        logging.error(f"Translation error: {str(e)}")
        return text

@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
async def agentic_hockey_chat(user_active_role: str, user_team: str, user_prompt: str) -> dict:
    """Main chat function with HockeyFood database integration"""
    logging.info(f"Processing question: {user_prompt}, role: {user_active_role}, team: {user_team}")
    
    # Sanitize user prompt
    if not user_prompt or not isinstance(user_prompt, str):
        logging.error("Invalid or empty user_prompt.")
        return {"ai_response": "Question cannot be empty.", "recommended_content_details": []}
    
    user_prompt = re.sub(r'\s+', ' ', user_prompt.strip())
    
    try:
        user_lang = detect(user_prompt)
        if user_lang not in ["en", "nl"]:
            user_lang = "en"
    except Exception:
        user_lang = "en"
    
    # Get both translated and original prompts
    processing_prompt, original_prompt = preprocess_prompt(user_prompt, user_lang)
    logging.info(f"Processing prompt: {processing_prompt}")
    
    # Handle greetings
    if is_greeting_or_vague(user_prompt, user_lang):
        answer = "Hello! How can I assist you with hockey, training, or other topics?" if user_lang == "en" else "Hallo! Waarmee kan ik je helpen met betrekking tot hockey, training of andere onderwerpen?"
        update_conversation_history(user_active_role, user_team, user_prompt, answer)
        return {"ai_response": answer, "recommended_content_details": []}
    
    # Check domain
    if not is_in_domain(processing_prompt):
        answer = "Sorry, I can only assist with questions about hockey, such as training, drills, strategies, rules, and tutorials. Please ask a hockey-related question!" if user_lang == "en" else "Sorry, ik kan alleen helpen met vragen over hockey, zoals training, oefeningen, strategieën, regels en tutorials. Stel me een hockeygerelateerde vraag!"
        update_conversation_history(user_active_role, user_team, user_prompt, answer)
        return {"ai_response": answer, "recommended_content_details": []}
    
    history = get_conversation_history(user_active_role, user_team)
    
    system_prompt = (
        f"You are an AI Assistant Bot specialized in field hockey, including training, drills, strategies, rules, and more. "
        f"You communicate with a {user_active_role} from the team {user_team}. "
        f"Provide concise, practical, and specific answers tailored to the user's role and team. "
        f"Focus on field hockey-related topics such as training, drills, strategies, rules, and tutorials.\n\n"
        f"Recent conversation:\n{history or 'No previous conversations.'}\n\n"
        f"Answer the following question in English:\n{processing_prompt}"
    )
    
    # Check if running on HuggingFace - use reasonable token limits
    is_huggingface = os.getenv("SPACE_ID") is not None
    max_tokens = 150 if is_huggingface else 200
    
    payload = {
        "model": "openai/gpt-4o",
        "messages": [
            {"role": "system", "content": system_prompt}
        ],
        "max_tokens": max_tokens,
        "temperature": 0.3,
        "top_p": 0.9
    }
    
    headers = {
        "Authorization": f"Bearer {OPENROUTER_API_KEY}",
        "Content-Type": "application/json"
    }
    
    try:
        if not OPENROUTER_API_KEY:
            return {"ai_response": "OpenRouter API key not configured. Please set OPENROUTER_API_KEY environment variable.", "recommended_content_details": []}
        
        logging.info("Making OpenRouter API call...")
        async with httpx.AsyncClient(timeout=60) as client:  # Increased timeout
            response = await client.post(OPENROUTER_API_URL, json=payload, headers=headers)
            response.raise_for_status()
            data = response.json()
            
            answer = data.get("choices", [{}])[0].get("message", {}).get("content", "").strip()
            
            if not answer:
                logging.error("No answer received from OpenRouter API.")
                return {"ai_response": "No answer received from the API.", "recommended_content_details": []}
            
            # Remove URLs from answer and translate
            answer = re.sub(r'https?://\S+', '', answer).strip()
            answer = translate_text(answer, "en", user_lang)
            
            # Search for recommended content from HockeyFood database (if available)
            recommended_content = []
            if sentence_model is not None and faiss_index is not None and metadata:
                logging.info("Searching HockeyFood database for relevant content...")
                recommended_content = search_hockey_content(processing_prompt, original_prompt if user_lang == "nl" else "")
            else:
                logging.info("Embeddings not available - running without content recommendations")
            
            # Format recommended content details with URLs from Multimedia table
            recommended_content_details = []
            for item in recommended_content:
                content_detail = {
                    "title": item["title"],
                    "type": item["type"],
                    "source": item["source_table"]
                }
                
                # Add URL for multimedia items, content for others
                if item["type"] == "multimedia" and "url" in item:
                    content_detail["url"] = item["url"]
                else:
                    content_detail["content"] = item.get("content", "")
                
                recommended_content_details.append(content_detail)
            
            update_conversation_history(user_active_role, user_team, user_prompt, answer)
            return {"ai_response": answer, "recommended_content_details": recommended_content_details}
    
    except httpx.HTTPStatusError as e:
        logging.error(f"OpenRouter API error: Status {e.response.status_code}")
        return {"ai_response": f"API error: {e.response.status_code} - {e.response.text}", "recommended_content_details": []}
    except httpx.TimeoutException:
        logging.error("OpenRouter API timeout")
        return {"ai_response": "Request timed out. Please try again.", "recommended_content_details": []}
    except httpx.NetworkError as e:
        logging.error(f"Network error: {str(e)}")
        return {"ai_response": "Network error occurred. Please check your connection and try again.", "recommended_content_details": []}
    except Exception as e:
        logging.error(f"Internal error: {str(e)}")
        return {"ai_response": f"Internal error: {str(e)}", "recommended_content_details": []}

# Initialize resources on import - graceful fallback for HuggingFace
try:
    load_resources()
    logging.info("Successfully initialized Original_OpenAPI_DB with HockeyFood database integration")
except Exception as e:
    logging.warning(f"Failed to initialize full resources: {e}")
    logging.info("Running in limited mode - basic hockey advice available without database features")
    # Set safe defaults for HuggingFace deployment
    sentence_model = None
    faiss_index = None 
    embeddings_np = None
    metadata = []