Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,14 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
#from llama_cpp import Llama
|
4 |
from datasets import load_dataset
|
5 |
import os
|
@@ -47,24 +56,32 @@ st.markdown('<div class="blurred-background"></div>', unsafe_allow_html=True)
|
|
47 |
|
48 |
#""""""""""""""""""""""""" Application Code Starts here """""""""""""""""""""""""""""""""""""""""""""
|
49 |
|
50 |
-
#
|
51 |
@st.cache_resource
|
52 |
def load_counseling_dataset():
|
53 |
-
|
|
|
|
|
54 |
|
55 |
-
dataset
|
|
|
|
|
|
|
56 |
|
57 |
# Fine-tune the model and save it
|
58 |
@st.cache_resource
|
59 |
def fine_tune_model():
|
60 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForLanguageModeling
|
61 |
-
|
62 |
# Load base model and tokenizer
|
63 |
model_name = "prabureddy/Mental-Health-FineTuned-Mistral-7B-Instruct-v0.2"
|
64 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
65 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
66 |
|
|
|
|
|
|
|
67 |
# Prepare dataset for training
|
|
|
|
|
68 |
def preprocess_function(examples):
|
69 |
return tokenizer(examples["context"] + "\n" + examples["response"], truncation=True)
|
70 |
|
@@ -74,13 +91,16 @@ def fine_tune_model():
|
|
74 |
# Training arguments
|
75 |
training_args = TrainingArguments(
|
76 |
output_dir="./fine_tuned_model",
|
77 |
-
evaluation_strategy="
|
78 |
learning_rate=2e-5,
|
79 |
-
per_device_train_batch_size=
|
|
|
80 |
num_train_epochs=3,
|
81 |
weight_decay=0.01,
|
|
|
82 |
save_total_limit=2,
|
83 |
-
|
|
|
84 |
)
|
85 |
|
86 |
# Trainer
|
@@ -124,10 +144,8 @@ if st.button("Get Supportive Response"):
|
|
124 |
if user_input.strip():
|
125 |
with st.spinner("Analyzing your input and generating a response..."):
|
126 |
try:
|
127 |
-
# Construct the messages for the pipeline
|
128 |
-
messages = [{"role": "user", "content": user_input}]
|
129 |
# Generate a response
|
130 |
-
response = pipe(
|
131 |
st.subheader("Supportive Suggestion:")
|
132 |
st.markdown(f"**{response}**")
|
133 |
except Exception as e:
|
|
|
1 |
import streamlit as st
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import (
|
4 |
+
AutoTokenizer,
|
5 |
+
AutoModelForCausalLM,
|
6 |
+
TrainingArguments,
|
7 |
+
Trainer,
|
8 |
+
DataCollatorForLanguageModeling,
|
9 |
+
pipeline,
|
10 |
+
)
|
11 |
+
#from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, pipeline
|
12 |
#from llama_cpp import Llama
|
13 |
from datasets import load_dataset
|
14 |
import os
|
|
|
56 |
|
57 |
#""""""""""""""""""""""""" Application Code Starts here """""""""""""""""""""""""""""""""""""""""""""
|
58 |
|
59 |
+
# Cache resource for dataset loading
|
60 |
@st.cache_resource
|
61 |
def load_counseling_dataset():
|
62 |
+
# Load a smaller subset of the dataset for memory efficiency
|
63 |
+
dataset = load_dataset("Amod/mental_health_counseling_conversations", split="train")
|
64 |
+
return dataset
|
65 |
|
66 |
+
# Process the dataset in batches to avoid memory overuse
|
67 |
+
def process_dataset_in_batches(dataset, batch_size=1000):
|
68 |
+
for example in dataset.shuffle().select(range(batch_size)):
|
69 |
+
yield example
|
70 |
|
71 |
# Fine-tune the model and save it
|
72 |
@st.cache_resource
|
73 |
def fine_tune_model():
|
|
|
|
|
74 |
# Load base model and tokenizer
|
75 |
model_name = "prabureddy/Mental-Health-FineTuned-Mistral-7B-Instruct-v0.2"
|
76 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
77 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
78 |
|
79 |
+
# Enable gradient checkpointing for memory optimization
|
80 |
+
model.gradient_checkpointing_enable()
|
81 |
+
|
82 |
# Prepare dataset for training
|
83 |
+
dataset = load_counseling_dataset()
|
84 |
+
|
85 |
def preprocess_function(examples):
|
86 |
return tokenizer(examples["context"] + "\n" + examples["response"], truncation=True)
|
87 |
|
|
|
91 |
# Training arguments
|
92 |
training_args = TrainingArguments(
|
93 |
output_dir="./fine_tuned_model",
|
94 |
+
evaluation_strategy="steps",
|
95 |
learning_rate=2e-5,
|
96 |
+
per_device_train_batch_size=8,
|
97 |
+
per_device_eval_batch_size=8,
|
98 |
num_train_epochs=3,
|
99 |
weight_decay=0.01,
|
100 |
+
fp16=True, # Enable FP16 for lower memory usage
|
101 |
save_total_limit=2,
|
102 |
+
save_steps=500,
|
103 |
+
logging_steps=100,
|
104 |
)
|
105 |
|
106 |
# Trainer
|
|
|
144 |
if user_input.strip():
|
145 |
with st.spinner("Analyzing your input and generating a response..."):
|
146 |
try:
|
|
|
|
|
147 |
# Generate a response
|
148 |
+
response = pipe(user_input, max_length=150, num_return_sequences=1)[0]["generated_text"]
|
149 |
st.subheader("Supportive Suggestion:")
|
150 |
st.markdown(f"**{response}**")
|
151 |
except Exception as e:
|