Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -64,7 +64,7 @@ def load_counseling_dataset():
|
|
64 |
return dataset
|
65 |
|
66 |
# Process the dataset in batches to avoid memory overuse
|
67 |
-
def process_dataset_in_batches(dataset, batch_size=
|
68 |
for example in dataset.shuffle().select(range(batch_size)):
|
69 |
yield example
|
70 |
|
@@ -93,14 +93,14 @@ def fine_tune_model():
|
|
93 |
output_dir="./fine_tuned_model",
|
94 |
evaluation_strategy="steps",
|
95 |
learning_rate=2e-5,
|
96 |
-
per_device_train_batch_size=
|
97 |
-
per_device_eval_batch_size=
|
98 |
num_train_epochs=3,
|
99 |
weight_decay=0.01,
|
100 |
fp16=True, # Enable FP16 for lower memory usage
|
101 |
save_total_limit=2,
|
102 |
-
save_steps=
|
103 |
-
logging_steps=
|
104 |
)
|
105 |
|
106 |
# Trainer
|
|
|
64 |
return dataset
|
65 |
|
66 |
# Process the dataset in batches to avoid memory overuse
|
67 |
+
def process_dataset_in_batches(dataset, batch_size=500):
|
68 |
for example in dataset.shuffle().select(range(batch_size)):
|
69 |
yield example
|
70 |
|
|
|
93 |
output_dir="./fine_tuned_model",
|
94 |
evaluation_strategy="steps",
|
95 |
learning_rate=2e-5,
|
96 |
+
per_device_train_batch_size=5,
|
97 |
+
per_device_eval_batch_size=5,
|
98 |
num_train_epochs=3,
|
99 |
weight_decay=0.01,
|
100 |
fp16=True, # Enable FP16 for lower memory usage
|
101 |
save_total_limit=2,
|
102 |
+
save_steps=250,
|
103 |
+
logging_steps=50,
|
104 |
)
|
105 |
|
106 |
# Trainer
|