Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
from __future__ import annotations | |
import pathlib | |
import gradio as gr | |
import mediapipe as mp | |
import numpy as np | |
mp_drawing = mp.solutions.drawing_utils | |
mp_drawing_styles = mp.solutions.drawing_styles | |
mp_pose = mp.solutions.pose | |
TITLE = "MediaPipe Human Pose Estimation" | |
DESCRIPTION = "https://google.github.io/mediapipe/" | |
def run( | |
image: np.ndarray, | |
model_complexity: int, | |
enable_segmentation: bool, | |
min_detection_confidence: float, | |
background_color: str, | |
) -> np.ndarray: | |
with mp_pose.Pose( | |
static_image_mode=True, | |
model_complexity=model_complexity, | |
enable_segmentation=enable_segmentation, | |
min_detection_confidence=min_detection_confidence, | |
) as pose: | |
results = pose.process(image) | |
res = image[:, :, ::-1].copy() | |
if enable_segmentation: | |
if background_color == "white": | |
bg_color = 255 | |
elif background_color == "black": | |
bg_color = 0 | |
elif background_color == "green": | |
bg_color = (0, 255, 0) # type: ignore | |
else: | |
raise ValueError | |
if results.segmentation_mask is not None: | |
res[results.segmentation_mask <= 0.1] = bg_color | |
else: | |
res[:] = bg_color | |
mp_drawing.draw_landmarks( | |
res, | |
results.pose_landmarks, | |
mp_pose.POSE_CONNECTIONS, | |
landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style(), | |
) | |
return res[:, :, ::-1] | |
model_complexities = list(range(3)) | |
background_colors = ["white", "black", "green"] | |
image_paths = sorted(pathlib.Path("images").rglob("*.jpg")) | |
examples = [[path, model_complexities[1], True, 0.5, background_colors[0]] for path in image_paths] | |
demo = gr.Interface( | |
fn=run, | |
inputs=[ | |
gr.Image(label="Input", type="numpy"), | |
gr.Radio(label="Model Complexity", choices=model_complexities, type="index", value=model_complexities[1]), | |
gr.Checkbox(label="Enable Segmentation", value=True), | |
gr.Slider(label="Minimum Detection Confidence", minimum=0, maximum=1, step=0.05, value=0.5), | |
gr.Radio(label="Background Color", choices=background_colors, type="value", value=background_colors[0]), | |
], | |
outputs=gr.Image(label="Output"), | |
examples=examples, | |
title=TITLE, | |
description=DESCRIPTION, | |
) | |
if __name__ == "__main__": | |
demo.queue().launch(show_error=True) | |