Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,27 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
import numpy as np
|
| 4 |
from keras.models import load_model
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
# Load the
|
| 7 |
model = load_model('model.h5')
|
| 8 |
|
| 9 |
def process_frame(frame):
|
| 10 |
# Resize the image to (128, 128)
|
| 11 |
-
resized_frame = cv2.resize(frame, (128, 128))
|
| 12 |
-
resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2RGB)
|
| 13 |
-
img_array = np.array(resized_frame) / 255.0
|
| 14 |
-
img_array = img_array.reshape(1, 128, 128, 3)
|
| 15 |
|
| 16 |
prediction = model.predict(img_array) # Get prediction
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
def convert_video_to_dumpscare(video, sensitivity):
|
| 20 |
output_frames = []
|
|
@@ -25,8 +32,7 @@ def convert_video_to_dumpscare(video, sensitivity):
|
|
| 25 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 26 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 27 |
|
| 28 |
-
|
| 29 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Ensure this codec is supported
|
| 30 |
out = cv2.VideoWriter('output_dumpscare.mp4', fourcc, fps, (width, height))
|
| 31 |
|
| 32 |
while cap.isOpened():
|
|
@@ -34,30 +40,34 @@ def convert_video_to_dumpscare(video, sensitivity):
|
|
| 34 |
if not ret:
|
| 35 |
break
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# Write the original frame to the output video
|
| 41 |
-
out.write(frame)
|
| 42 |
|
| 43 |
cap.release()
|
| 44 |
out.release()
|
| 45 |
-
|
| 46 |
-
return 'output_dumpscare.mp4' # Return the path to the saved video
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
def gradio_interface(video, sensitivity):
|
| 49 |
-
|
| 50 |
-
return
|
| 51 |
|
| 52 |
-
# Create
|
| 53 |
iface = gr.Interface(
|
| 54 |
fn=gradio_interface,
|
| 55 |
inputs=[
|
| 56 |
-
gr.Video(label="
|
| 57 |
-
gr.Slider(label="Sensitivity", minimum=0, maximum=100, step=1
|
| 58 |
],
|
| 59 |
-
outputs=gr.
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
-
iface.launch()
|
|
|
|
|
|
|
| 1 |
import cv2
|
| 2 |
import numpy as np
|
| 3 |
from keras.models import load_model
|
| 4 |
+
from moviepy.editor import VideoFileClip
|
| 5 |
+
import gradio as gr
|
| 6 |
|
| 7 |
+
# Load the AI model
|
| 8 |
model = load_model('model.h5')
|
| 9 |
|
| 10 |
def process_frame(frame):
|
| 11 |
# Resize the image to (128, 128)
|
| 12 |
+
resized_frame = cv2.resize(frame, (128, 128))
|
| 13 |
+
resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2RGB)
|
| 14 |
+
img_array = np.array(resized_frame) / 255.0
|
| 15 |
+
img_array = img_array.reshape(1, 128, 128, 3)
|
| 16 |
|
| 17 |
prediction = model.predict(img_array) # Get prediction
|
| 18 |
+
|
| 19 |
+
# Example logic to modify frame based on prediction
|
| 20 |
+
if prediction[0][0] > 0.5: # Condition based on prediction
|
| 21 |
+
return frame # Keep the original frame if the condition is met
|
| 22 |
+
else:
|
| 23 |
+
# Example modification: convert to grayscale
|
| 24 |
+
return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 25 |
|
| 26 |
def convert_video_to_dumpscare(video, sensitivity):
|
| 27 |
output_frames = []
|
|
|
|
| 32 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 33 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 34 |
|
| 35 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
|
|
| 36 |
out = cv2.VideoWriter('output_dumpscare.mp4', fourcc, fps, (width, height))
|
| 37 |
|
| 38 |
while cap.isOpened():
|
|
|
|
| 40 |
if not ret:
|
| 41 |
break
|
| 42 |
|
| 43 |
+
modified_frame = process_frame(frame) # Get modified frame
|
| 44 |
+
out.write(modified_frame) # Write the modified frame to the output video
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
cap.release()
|
| 47 |
out.release()
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
# Add audio from the original video
|
| 50 |
+
original_video = VideoFileClip(video)
|
| 51 |
+
output_video = VideoFileClip('output_dumpscare.mp4')
|
| 52 |
+
final_video = output_video.set_audio(original_video.audio)
|
| 53 |
+
final_video.write_videofile('final_output_dumpscare.mp4', codec='libx264')
|
| 54 |
+
|
| 55 |
+
return 'final_output_dumpscare.mp4'
|
| 56 |
+
|
| 57 |
+
# Gradio Interface
|
| 58 |
def gradio_interface(video, sensitivity):
|
| 59 |
+
output_video = convert_video_to_dumpscare(video, sensitivity)
|
| 60 |
+
return output_video
|
| 61 |
|
| 62 |
+
# Create Gradio interface
|
| 63 |
iface = gr.Interface(
|
| 64 |
fn=gradio_interface,
|
| 65 |
inputs=[
|
| 66 |
+
gr.Video(label="Input Video"),
|
| 67 |
+
gr.Slider(label="Sensitivity", minimum=0, maximum=100, step=1)
|
| 68 |
],
|
| 69 |
+
outputs=gr.Video(label="Output Video")
|
| 70 |
)
|
| 71 |
|
| 72 |
+
if __name__ == "__main__":
|
| 73 |
+
iface.launch()
|