Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,60 +1,58 @@
|
|
| 1 |
-
import cv2
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
-
|
| 5 |
|
| 6 |
-
# Load your
|
| 7 |
-
model = load_model('model.h5')
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
def process_frame(frame):
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
| 12 |
img = np.expand_dims(img, axis=0)
|
|
|
|
| 13 |
|
| 14 |
prediction = model.predict(img)
|
| 15 |
return prediction[0][1] # Assuming category 1 is jumpscare
|
| 16 |
|
|
|
|
| 17 |
def convert_video_to_dumpscare(video_path, sensitivity):
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 21 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
ret, frame = cap.read()
|
| 28 |
-
if not ret:
|
| 29 |
-
break
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
return "Please upload a video."
|
| 45 |
-
return convert_video_to_dumpscare(video, sensitivity) # Use video directly
|
| 46 |
-
|
| 47 |
-
# Set up Gradio app
|
| 48 |
-
iface = gr.Interface(
|
| 49 |
-
fn=gradio_interface,
|
| 50 |
-
inputs=[
|
| 51 |
-
gr.Video(label="Import Video"), # Removed type argument
|
| 52 |
-
gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Sensitivity"),
|
| 53 |
-
],
|
| 54 |
-
outputs=gr.Video(label="Output Dumpscare Video"),
|
| 55 |
-
title="Dumpscare Video Converter",
|
| 56 |
-
description="Upload a video, set sensitivity, and click 'Cut' to process the video.",
|
| 57 |
-
)
|
| 58 |
-
|
| 59 |
-
# Launch the interface
|
| 60 |
-
iface.launch()
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import cv2
|
| 3 |
import numpy as np
|
| 4 |
+
import tensorflow as tf
|
| 5 |
|
| 6 |
+
# Load your model
|
| 7 |
+
model = tf.keras.models.load_model('model.h5') # No path needed if it's in the same directory
|
| 8 |
|
| 9 |
+
# Function to resize frames
|
| 10 |
+
def resize_frame(frame, size=(64, 64)):
|
| 11 |
+
return cv2.resize(frame, size)
|
| 12 |
+
|
| 13 |
+
# Function to process each frame
|
| 14 |
def process_frame(frame):
|
| 15 |
+
# Resize the frame
|
| 16 |
+
resized_frame = resize_frame(frame)
|
| 17 |
+
|
| 18 |
+
# Normalize and prepare the frame for the model
|
| 19 |
+
img = resized_frame.astype('float32') / 255.0
|
| 20 |
img = np.expand_dims(img, axis=0)
|
| 21 |
+
img = img.reshape(1, -1) # Flatten to match the input shape
|
| 22 |
|
| 23 |
prediction = model.predict(img)
|
| 24 |
return prediction[0][1] # Assuming category 1 is jumpscare
|
| 25 |
|
| 26 |
+
# Function to convert video to dumpscare
|
| 27 |
def convert_video_to_dumpscare(video_path, sensitivity):
|
| 28 |
+
cap = cv2.VideoCapture(video_path)
|
| 29 |
+
jumpscare_frames = []
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
while cap.isOpened():
|
| 32 |
+
ret, frame = cap.read()
|
| 33 |
+
if not ret:
|
| 34 |
+
break
|
| 35 |
+
prediction = process_frame(frame)
|
| 36 |
+
if prediction > sensitivity: # Adjust this threshold as needed
|
| 37 |
+
jumpscare_frames.append(frame)
|
| 38 |
|
| 39 |
+
cap.release()
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
# Here you can save jumpscare frames or create a new video
|
| 42 |
+
return "Dumpscare video created successfully!" # Change this as needed
|
| 43 |
|
| 44 |
+
# Gradio interface
|
| 45 |
+
def gradio_interface(video, sensitivity):
|
| 46 |
+
result = convert_video_to_dumpscare(video, sensitivity)
|
| 47 |
+
return result
|
| 48 |
|
| 49 |
+
with gr.Blocks() as demo:
|
| 50 |
+
gr.Markdown("## Video Dumpscare Generator")
|
| 51 |
+
video_input = gr.Video(label="Upload Video")
|
| 52 |
+
sensitivity_input = gr.Slider(minimum=0, maximum=1, label="Sensitivity", value=0.5)
|
| 53 |
+
submit_btn = gr.Button("Cut Video")
|
| 54 |
+
output_text = gr.Textbox(label="Output")
|
| 55 |
|
| 56 |
+
submit_btn.click(gradio_interface, inputs=[video_input, sensitivity_input], outputs=output_text)
|
| 57 |
+
|
| 58 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|