Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,133 +1,125 @@
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
import tensorflow as tf
|
4 |
-
from moviepy import VideoFileClip, concatenate_videoclips
|
5 |
import gradio as gr
|
6 |
from tqdm import tqdm
|
7 |
import os
|
8 |
import logging
|
9 |
from datetime import datetime
|
10 |
|
11 |
-
# ---
|
12 |
-
# The code now assumes 'model.h5' is in the same root directory as this app.py file.
|
13 |
MODEL_PATH = 'model.h5'
|
14 |
-
|
15 |
-
# --- Setup Basic Logging ---
|
16 |
-
# This will print helpful info to the Hugging Face logs for debugging.
|
17 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
18 |
|
19 |
# --- Load Model ---
|
20 |
-
|
21 |
-
error_msg = f"Model file not found at '{MODEL_PATH}'. Make sure you have uploaded your 'model.h5' to the root of your Space."
|
22 |
-
logging.error(error_msg)
|
23 |
-
raise FileNotFoundError(error_msg)
|
24 |
-
|
25 |
model = tf.keras.models.load_model(MODEL_PATH)
|
|
|
26 |
logging.info("AI model loaded successfully.")
|
27 |
|
28 |
-
# Based on your training code, LabelBinarizer sorts class names alphabetically.
|
29 |
-
# "jumpscare" comes before "normal", so the model's output for the "jumpscare" class
|
30 |
-
# will be at index 0. If this is wrong, change this to 1.
|
31 |
JUMPSCARE_CLASS_INDEX = 0
|
32 |
logging.info(f"Using class index {JUMPSCARE_CLASS_INDEX} for 'jumpscare' probability.")
|
33 |
|
34 |
|
35 |
def predict_frame_is_jumpscare(frame, threshold):
|
36 |
-
"""Analyzes a single video frame and predicts if it's a jumpscare."""
|
37 |
-
# Preprocess the frame
|
38 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
39 |
resized_frame = cv2.resize(rgb_frame, (128, 128))
|
40 |
img_array = np.array(resized_frame) / 255.0
|
41 |
img_array = np.expand_dims(img_array, axis=0)
|
42 |
|
43 |
-
# Get the model's prediction (e.g., [[0.9, 0.1]])
|
44 |
prediction = model.predict(img_array, verbose=0)
|
45 |
-
|
46 |
-
# Get the specific probability for the 'jumpscare' class
|
47 |
jumpscare_probability = prediction[0][JUMPSCARE_CLASS_INDEX]
|
48 |
|
49 |
return jumpscare_probability > threshold
|
50 |
|
51 |
|
52 |
def generate_jumpscare_compilation(video_path, sensitivity, progress=gr.Progress()):
|
53 |
-
"""Analyzes a video, finds jumpscare segments, and creates a compilation."""
|
54 |
try:
|
55 |
-
# --- Initialization ---
|
56 |
threshold = sensitivity / 100.0
|
57 |
analysis_fps = 10
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
63 |
|
|
|
64 |
original_clip = VideoFileClip(video_path)
|
65 |
-
|
66 |
jumpscare_times = []
|
67 |
total_frames = int(original_clip.duration * analysis_fps)
|
68 |
|
69 |
-
# --- Frame-by-Frame Analysis ---
|
70 |
progress(0, desc="Analyzing Frames...")
|
71 |
for i, frame in enumerate(tqdm(original_clip.iter_frames(fps=analysis_fps), total=total_frames, desc="Analyzing Frames")):
|
72 |
current_time = i / analysis_fps
|
73 |
progress(i / total_frames, desc=f"Analyzing... {int(current_time)}s / {int(original_clip.duration)}s")
|
74 |
-
|
75 |
if predict_frame_is_jumpscare(frame, threshold):
|
76 |
jumpscare_times.append(current_time)
|
77 |
|
78 |
if not jumpscare_times:
|
79 |
-
|
80 |
-
logging.warning(msg)
|
81 |
-
raise gr.Error(msg)
|
82 |
|
83 |
-
# ---
|
84 |
-
logging.info(f"
|
85 |
merged_segments = []
|
86 |
if jumpscare_times:
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
progress(0.9, desc="Stitching clips together...")
|
98 |
-
final_clips = [original_clip.subclipped(start, min(end, original_clip.duration)) for start, end in merged_segments]
|
99 |
|
100 |
-
|
101 |
|
102 |
-
|
103 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
104 |
-
output_path = f"jumpscare_compilation_{timestamp}.mp4"
|
105 |
|
106 |
-
|
107 |
final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")
|
108 |
|
109 |
original_clip.close()
|
110 |
final_video.close()
|
111 |
-
|
112 |
-
logging.info("Process completed successfully.")
|
113 |
return output_path
|
114 |
|
115 |
except Exception as e:
|
116 |
logging.error(f"An error occurred: {e}", exc_info=True)
|
117 |
raise gr.Error(f"An unexpected error occurred. Check the logs for details. Error: {e}")
|
118 |
|
119 |
-
# --- Gradio Interface
|
120 |
iface = gr.Interface(
|
121 |
fn=generate_jumpscare_compilation,
|
122 |
inputs=[
|
123 |
gr.Video(label="Upload FNAF Video"),
|
124 |
-
gr.Slider(minimum=1, maximum=99, step=1, value=80, label="Detection Sensitivity"
|
125 |
-
info="Higher values require more certainty from the AI. Lower values find more, but might have errors.")
|
126 |
],
|
127 |
outputs=gr.Video(label="Jumpscare Compilation"),
|
128 |
-
title="
|
129 |
-
description="Upload a video, and the AI will find all jumpscares and compile them. All files are in the root directory."
|
130 |
)
|
131 |
|
|
|
132 |
if __name__ == "__main__":
|
133 |
iface.launch()
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
import tensorflow as tf
|
4 |
+
from moviepy.editor import VideoFileClip, concatenate_videoclips
|
5 |
import gradio as gr
|
6 |
from tqdm import tqdm
|
7 |
import os
|
8 |
import logging
|
9 |
from datetime import datetime
|
10 |
|
11 |
+
# --- Configuration ---
|
|
|
12 |
MODEL_PATH = 'model.h5'
|
|
|
|
|
|
|
13 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
14 |
|
15 |
# --- Load Model ---
|
16 |
+
tf.get_logger().setLevel('ERROR')
|
|
|
|
|
|
|
|
|
17 |
model = tf.keras.models.load_model(MODEL_PATH)
|
18 |
+
tf.get_logger().setLevel('INFO')
|
19 |
logging.info("AI model loaded successfully.")
|
20 |
|
|
|
|
|
|
|
21 |
JUMPSCARE_CLASS_INDEX = 0
|
22 |
logging.info(f"Using class index {JUMPSCARE_CLASS_INDEX} for 'jumpscare' probability.")
|
23 |
|
24 |
|
25 |
def predict_frame_is_jumpscare(frame, threshold):
|
|
|
|
|
26 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
27 |
resized_frame = cv2.resize(rgb_frame, (128, 128))
|
28 |
img_array = np.array(resized_frame) / 255.0
|
29 |
img_array = np.expand_dims(img_array, axis=0)
|
30 |
|
|
|
31 |
prediction = model.predict(img_array, verbose=0)
|
|
|
|
|
32 |
jumpscare_probability = prediction[0][JUMPSCARE_CLASS_INDEX]
|
33 |
|
34 |
return jumpscare_probability > threshold
|
35 |
|
36 |
|
37 |
def generate_jumpscare_compilation(video_path, sensitivity, progress=gr.Progress()):
|
|
|
38 |
try:
|
|
|
39 |
threshold = sensitivity / 100.0
|
40 |
analysis_fps = 10
|
41 |
+
|
42 |
+
# --- Buffers and Gap settings ---
|
43 |
+
pre_scare_buffer = 1.0 # Seconds to add before a scare starts
|
44 |
+
post_scare_buffer = 1.5 # Seconds to add after a scare ends
|
45 |
+
# Maximum time between two detections to be considered the SAME jumpscare event
|
46 |
+
MAX_GAP_BETWEEN_DETECTIONS = 2.0
|
47 |
|
48 |
+
logging.info(f"Starting analysis. Sensitivity={sensitivity}, Threshold={threshold}")
|
49 |
original_clip = VideoFileClip(video_path)
|
|
|
50 |
jumpscare_times = []
|
51 |
total_frames = int(original_clip.duration * analysis_fps)
|
52 |
|
|
|
53 |
progress(0, desc="Analyzing Frames...")
|
54 |
for i, frame in enumerate(tqdm(original_clip.iter_frames(fps=analysis_fps), total=total_frames, desc="Analyzing Frames")):
|
55 |
current_time = i / analysis_fps
|
56 |
progress(i / total_frames, desc=f"Analyzing... {int(current_time)}s / {int(original_clip.duration)}s")
|
|
|
57 |
if predict_frame_is_jumpscare(frame, threshold):
|
58 |
jumpscare_times.append(current_time)
|
59 |
|
60 |
if not jumpscare_times:
|
61 |
+
raise gr.Error("No jumpscares detected. Try a lower sensitivity value or check the AI model.")
|
|
|
|
|
62 |
|
63 |
+
# --- REWRITTEN MERGING LOGIC ---
|
64 |
+
logging.info(f"Found {len(jumpscare_times)} jumpscare frames. Merging into distinct clips.")
|
65 |
merged_segments = []
|
66 |
if jumpscare_times:
|
67 |
+
# Start the first segment
|
68 |
+
start_of_segment = jumpscare_times[0]
|
69 |
+
end_of_segment = jumpscare_times[0]
|
70 |
+
|
71 |
+
for i in range(1, len(jumpscare_times)):
|
72 |
+
# If the gap to the last detection is too large, it's a new event
|
73 |
+
if jumpscare_times[i] > end_of_segment + MAX_GAP_BETWEEN_DETECTIONS:
|
74 |
+
# Finalize the previous segment by adding buffers
|
75 |
+
merged_segments.append((
|
76 |
+
max(0, start_of_segment - pre_scare_buffer),
|
77 |
+
min(original_clip.duration, end_of_segment + post_scare_buffer)
|
78 |
+
))
|
79 |
+
# Start a new segment
|
80 |
+
start_of_segment = jumpscare_times[i]
|
81 |
+
|
82 |
+
# Always update the end time of the current segment
|
83 |
+
end_of_segment = jumpscare_times[i]
|
84 |
+
|
85 |
+
# Add the very last segment after the loop finishes
|
86 |
+
merged_segments.append((
|
87 |
+
max(0, start_of_segment - pre_scare_buffer),
|
88 |
+
min(original_clip.duration, end_of_segment + post_scare_buffer)
|
89 |
+
))
|
90 |
+
|
91 |
+
if not merged_segments:
|
92 |
+
raise gr.Error("Could not form any clips from the detected jumpscares.")
|
93 |
+
|
94 |
+
logging.info(f"Created {len(merged_segments)} clips to stitch together.")
|
95 |
progress(0.9, desc="Stitching clips together...")
|
|
|
96 |
|
97 |
+
final_clips = [original_clip.subclipped(start, end) for start, end in merged_segments]
|
98 |
|
99 |
+
final_video = concatenate_videoclips(final_clips, method="compose")
|
|
|
|
|
100 |
|
101 |
+
output_path = f"jumpscare_compilation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4"
|
102 |
final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")
|
103 |
|
104 |
original_clip.close()
|
105 |
final_video.close()
|
|
|
|
|
106 |
return output_path
|
107 |
|
108 |
except Exception as e:
|
109 |
logging.error(f"An error occurred: {e}", exc_info=True)
|
110 |
raise gr.Error(f"An unexpected error occurred. Check the logs for details. Error: {e}")
|
111 |
|
112 |
+
# --- Gradio Interface ---
|
113 |
iface = gr.Interface(
|
114 |
fn=generate_jumpscare_compilation,
|
115 |
inputs=[
|
116 |
gr.Video(label="Upload FNAF Video"),
|
117 |
+
gr.Slider(minimum=1, maximum=99, step=1, value=80, label="Detection Sensitivity")
|
|
|
118 |
],
|
119 |
outputs=gr.Video(label="Jumpscare Compilation"),
|
120 |
+
title="AI FNAF Jumpscare Dump Generator"
|
|
|
121 |
)
|
122 |
|
123 |
+
# --- Launch ---
|
124 |
if __name__ == "__main__":
|
125 |
iface.launch()
|