szili2011's picture
Update app.py
47c8e01 verified
raw
history blame
5.68 kB
import cv2
import numpy as np
import tensorflow as tf
from moviepy import VideoFileClip, concatenate_videoclips
import gradio as gr
from tqdm import tqdm
import os
import logging
from datetime import datetime
# --- IMPORTANT CHANGE: No folders needed ---
# The code now assumes 'model.h5' is in the same root directory as this app.py file.
MODEL_PATH = 'model.h5'
# --- Setup Basic Logging ---
# This will print helpful info to the Hugging Face logs for debugging.
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Load Model ---
if not os.path.exists(MODEL_PATH):
error_msg = f"Model file not found at '{MODEL_PATH}'. Make sure you have uploaded your 'model.h5' to the root of your Space."
logging.error(error_msg)
raise FileNotFoundError(error_msg)
model = tf.keras.models.load_model(MODEL_PATH)
logging.info("AI model loaded successfully.")
# Based on your training code, LabelBinarizer sorts class names alphabetically.
# "jumpscare" comes before "normal", so the model's output for the "jumpscare" class
# will be at index 0. If this is wrong, change this to 1.
JUMPSCARE_CLASS_INDEX = 0
logging.info(f"Using class index {JUMPSCARE_CLASS_INDEX} for 'jumpscare' probability.")
def predict_frame_is_jumpscare(frame, threshold):
"""Analyzes a single video frame and predicts if it's a jumpscare."""
# Preprocess the frame
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
resized_frame = cv2.resize(rgb_frame, (128, 128))
img_array = np.array(resized_frame) / 255.0
img_array = np.expand_dims(img_array, axis=0)
# Get the model's prediction (e.g., [[0.9, 0.1]])
prediction = model.predict(img_array, verbose=0)
# Get the specific probability for the 'jumpscare' class
jumpscare_probability = prediction[0][JUMPSCARE_CLASS_INDEX]
return jumpscare_probability > threshold
def generate_jumpscare_compilation(video_path, sensitivity, progress=gr.Progress()):
"""Analyzes a video, finds jumpscare segments, and creates a compilation."""
try:
# --- Initialization ---
threshold = sensitivity / 100.0
analysis_fps = 10
pre_scare_buffer = 1.0 # seconds before the scare
post_scare_buffer = 1.5 # seconds after the scare
logging.info(f"Starting analysis for video: {os.path.basename(video_path)}")
logging.info(f"Settings: Sensitivity={sensitivity}, Threshold={threshold}")
original_clip = VideoFileClip(video_path)
jumpscare_times = []
total_frames = int(original_clip.duration * analysis_fps)
# --- Frame-by-Frame Analysis ---
progress(0, desc="Analyzing Frames...")
for i, frame in enumerate(tqdm(original_clip.iter_frames(fps=analysis_fps), total=total_frames, desc="Analyzing Frames")):
current_time = i / analysis_fps
progress(i / total_frames, desc=f"Analyzing... {int(current_time)}s / {int(original_clip.duration)}s")
if predict_frame_is_jumpscare(frame, threshold):
jumpscare_times.append(current_time)
if not jumpscare_times:
msg = "No jumpscares detected. Try a lower sensitivity value."
logging.warning(msg)
raise gr.Error(msg)
# --- Merge close detections into continuous segments ---
logging.info(f"Merging {len(jumpscare_times)} detected frames into clips...")
merged_segments = []
if jumpscare_times:
start_time = end_time = jumpscare_times[0]
for t in jumpscare_times[1:]:
if t <= end_time + post_scare_buffer:
end_time = t
else:
merged_segments.append((max(0, start_time - pre_scare_buffer), end_time + post_scare_buffer))
start_time = end_time = t
merged_segments.append((max(0, start_time - pre_scare_buffer), end_time + post_scare_buffer))
# --- Create Final Video ---
progress(0.9, desc="Stitching clips together...")
final_clips = [original_clip.subclip(start, min(end, original_clip.duration)) for start, end in merged_segments]
final_video = concatenate_videoclips(final_clips, method="compose")
# Save the output video to the root with a unique name
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_path = f"jumpscare_compilation_{timestamp}.mp4"
logging.info(f"Writing final video to {output_path}")
final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")
original_clip.close()
final_video.close()
logging.info("Process completed successfully.")
return output_path
except Exception as e:
logging.error(f"An error occurred: {e}", exc_info=True)
raise gr.Error(f"An unexpected error occurred. Check the logs for details. Error: {e}")
# --- Gradio Interface (Simplified) ---
iface = gr.Interface(
fn=generate_jumpscare_compilation,
inputs=[
gr.Video(label="Upload FNAF Video"),
gr.Slider(minimum=1, maximum=99, step=1, value=80, label="Detection Sensitivity",
info="Higher values require more certainty from the AI. Lower values find more, but might have errors.")
],
outputs=gr.Video(label="Jumpscare Compilation"),
title="🤖 AI FNAF Jumpscare Dump Generator",
description="Upload a video, and the AI will find all jumpscares and compile them. All files are in the root directory.",
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch()