File size: 16,044 Bytes
16c6962
 
 
 
 
 
 
 
 
 
1c602ce
16c6962
1c602ce
16c6962
1c602ce
16c6962
 
1c602ce
 
 
 
16c6962
 
1c602ce
 
 
 
 
16c6962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b16d997
 
 
16c6962
d300034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16c6962
 
d300034
 
16c6962
d300034
 
 
16c6962
 
d300034
 
 
 
16c6962
 
 
 
 
 
 
 
 
d300034
16c6962
 
 
 
 
 
 
 
 
 
d300034
16c6962
 
 
d300034
16c6962
 
 
1c602ce
 
16c6962
 
 
d300034
16c6962
 
 
 
d300034
 
16c6962
1c602ce
 
 
16c6962
 
 
d300034
 
16c6962
 
 
 
 
 
 
 
 
 
 
1c602ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16c6962
 
 
 
 
 
 
d300034
16c6962
 
 
d300034
16c6962
 
 
 
 
 
 
 
 
 
d300034
16c6962
1c602ce
16c6962
55479e4
 
d300034
55479e4
 
 
 
 
 
 
 
16c6962
793b6bd
d300034
16c6962
793b6bd
 
d300034
 
793b6bd
 
 
 
 
55479e4
d300034
 
 
55479e4
 
 
 
 
793b6bd
16c6962
 
 
 
 
d300034
16c6962
 
d300034
16c6962
d300034
16c6962
 
 
 
 
 
 
 
d300034
 
16c6962
d300034
16c6962
d300034
16c6962
 
d300034
16c6962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os
import numpy as np
import pandas as pd
import streamlit as st

import scanpy as sc

#import mpld3
import matplotlib.pyplot as plt

#from mpl_toolkits.axes_grid1 import make_axes_locatable

#import matplotlib.gridspec as gridspec

#from sunbird.categorical_encoding import frequency_encoding


import seaborn as sns

plt.rcParams.update({'figure.autolayout': True})
plt.rcParams['axes.linewidth'] = 0.0001


from functions import pathway_analyses


#sc.settings.set_figure_params(dpi=80, facecolor='white',fontsize=4)
sc.settings.set_figure_params(dpi=80, facecolor='white',fontsize=12)

#disable st.pyplot warning
st.set_page_config(layout="wide") 
st.markdown(
    """
<style>
.streamlit-expanderHeader {
    font-size: x-large;
}
</style>
""",
    unsafe_allow_html=True,
)
m=st.markdown("""

<style>

div.stTitle {

font-size:40px;

}

</style>"""
,unsafe_allow_html=True)

st.set_option('deprecation.showPyplotGlobalUse', False)

#load Data
cwd=os.getcwd()+'/'#+'data/'


#@st.cache_data
def get_data():
    if 'adata_annot' not in st.session_state or 'cell_type' not in st.session_state or 'broad_type' not in st.session_state:
        adata_annot = sc.read_h5ad(cwd+'multiregion_brainaging_annotated.h5ad')
        st.session_state['adata_annot'] = adata_annot
        if 'genes_list' not in st.session_state:        
            genes=adata_annot.var.index
            #genes_list=sorted(genes.unique())
            st.session_state['genes_list'] = sorted(genes.unique())
        if 'cell_type' not in st.session_state:
            #cell_type=diff_fdr[diff_fdr.type=='cell_type']['tissue']
            #cell_type=sorted(cell_type.unique())
            anno=adata_annot.obs.new_anno
            #cell_type=sorted(anno.unique())
            st.session_state['cell_type'] = sorted(anno.unique())
        if 'broad_type' not in st.session_state:        
            broad_celltype=adata_annot.obs.broad_celltype
            #broad_type=sorted(broad_type.unique())
            st.session_state['broad_type'] = sorted(broad_celltype.unique())
            
    #Also load Go Terms
    if 'go_table' not in st.session_state:        
        bp = pathway_analyses.read_pathways('pathway_databases/GO_Biological_Process_2021.txt')

        go_bp_paths = bp.set_index(0)
        go_bp_paths.fillna("", inplace=True)
        go_bp_paths_dict = go_bp_paths.to_dict(orient='index')


        gene_set_by_path = {key: [val for val in value.values() if val != ""] for key, value in go_bp_paths_dict.items()}
        gene_set_by_path = pd.DataFrame.from_dict(gene_set_by_path, orient='index').transpose()     
        st.session_state['path_ways']=gene_set_by_path.columns
        st.session_state['go_table']=gene_set_by_path
#done load Data



#st.title('Single nuclei atlas of human aging in brain regions')
st.title('Brain Age Browser')

#genes_list,adata_annot=get_data()

get_data()

tab1, tab2,readme = st.tabs(["Gene Expression by CellType", "Age associations for multiple genes", "README"])
data = np.random.randn(10, 1)
with tab1:
    with st.form(key='columns_in_form'):
        #c1, c2, c3 = st.columns([4,4,2])
        c1, c2 = st.columns(2)
        with c1:
            selected_gene = st.selectbox(
            'Please select a gene',
            st.session_state['genes_list'])
        with c2:
            selected_celltype = st.selectbox(
            'Please select CellType',
            st.session_state['cell_type']
            )
        Updated=st.form_submit_button(label = 'Go')
    if not isinstance(selected_gene, type(None)) and not isinstance(selected_celltype, type(None)) and Updated:
        fig = plt.figure(figsize=(6, 6))
        
        col1,col2= st.columns([1,1])
        with col1:
            fig11, axx11 = plt.subplots(figsize=(5,5))
            sc.pl.umap(st.session_state['adata_annot'], color='new_anno', title='', legend_loc='on data',legend_fontsize='8', frameon=False,show=False, ax=axx11)
            st.pyplot(fig11)   
                 
        with col2:
            fig12, axx12 = plt.subplots(figsize=(5,5))
            #sc.pl.umap(st.session_state['adata_annot'], color='new_anno', title='', legend_loc='on data', frameon=False,show=False, ax=axx2)
            sc.pl.umap(st.session_state['adata_annot'], color=selected_gene, title='', legend_loc='best', frameon=False,show=False,legend_fontsize='xx-small', ax=axx12)#,vmax='p99')
            #plt.xticks(rotation = 45)
            #plt.colorbar(cax=cax)
            axx12.set_title(selected_gene, fontsize=12)
            
            st.pyplot(fig12)        

        #Subset Younv and Old
        adata_Young = st.session_state['adata_annot'][st.session_state['adata_annot'].obs['Age_group']=='young']
        adata_Old = st.session_state['adata_annot'][st.session_state['adata_annot'].obs['Age_group']=='old']
        
        #Young/Old  but for cell_type
        adata_YoungAst = adata_Young[adata_Young.obs['new_anno']==selected_celltype]
        adata_OldAst = adata_Old[adata_Old.obs['new_anno']==selected_celltype]
        
        # # #Young/Old  but for cell_type
        # # adata_YoungAst = adata_Young[adata_Young.obs['broad_celltype']==selected_celltype]
        # # adata_OldAst = adata_Old[adata_Old.obs['broad_celltype']==selected_celltype]
        
        #Young
        dot_size=.05
        font_sz=4
        fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2,figsize=(3,3))
        #plt.subplots_adjust(wspace=0, hspace=0)
        #plt.tight_layout()
        #fig.tight_layout(rect=[0, 0.03, 1, 0.95]) #[left, bottom, right, top]
        sc.pl.umap(adata_Young, color=selected_gene, title="", legend_loc='right margin', color_map='viridis',frameon=True,show=False,size=dot_size, legend_fontsize='xx-small',colorbar_loc=None,ax=ax1)  
        ax1.set_title('All', fontsize=font_sz)
        ax1.set_ylabel('Young', fontsize=font_sz)
        #ax1.set_xlabel('', fontsize=0)
        ax1.get_xaxis().set_visible(False)
        sc.pl.umap(adata_YoungAst, color=selected_gene, title="", legend_loc='right margin', color_map='viridis', frameon=True,show=False,size=dot_size,legend_fontsize='xx-small',colorbar_loc=None, ax=ax2)  
        ax2.set_title(selected_celltype, fontsize=font_sz)
        #ax2.set_xlabel('', fontsize=0)
        ax2.set_ylabel('', fontsize=0)
        ax2.get_xaxis().set_visible(False)
        ax2.get_yaxis().set_visible(False)
        sc.pl.umap(adata_Old, color=selected_gene, title="", legend_loc='right margin', color_map='viridis', frameon=True,show=False,size=dot_size,legend_fontsize='xx-small', colorbar_loc="bottom",ax=ax3)  
        
        #ax3.set_xlabel('x-label', fontsize=12)
        ax3.set_ylabel('Old', fontsize=font_sz)
        #ax3.set_xlabel('', fontsize=0)
        ax3.get_xaxis().set_visible(False)
        #ax3.get_title().set_visible(False)
        sc.pl.umap(adata_OldAst, color=selected_gene, title="", legend_loc='right margin', color_map='viridis', frameon=True,show=False,size=dot_size,legend_fontsize='xx-small', colorbar_loc="bottom",ax=ax4)  
        #ax4.set_xlabel('', fontsize=0)
        #ax4.set_ylabel('', fontsize=0)
        ax4.get_xaxis().set_visible(False)
        ax4.get_yaxis().set_visible(False)
        #ax4.get_title().set_visible(False)
        plt.suptitle(selected_gene+"\ncoefficient estimate: 0.24 | BH-FDR p=7.91x$10^{-3}$",fontsize=font_sz)
        
        #plt.subplots_adjust(top=0.95)
        
        #plt.tight_layout(pad=0, w_pad=0, h_pad=0)
        #plt.tight_layout()
        st.pyplot(plt.gcf())        

with tab2:
    with st.form(key='multiselect_form'):
        c1, c2, c3 = st.columns([4,4,2])
        with c1:
            multi_genes = st.multiselect(
            'Select Genes List',
            st.session_state['genes_list'])
        with c2:
            go_term = st.selectbox(
            'Select GO Term',
            st.session_state['path_ways'])
        with c3:
            Choice = st.radio(
            "",
            ('Gene Set','GO Term'))
 
        Updated_tab2=st.form_submit_button(label = 'Show Results')
    if not isinstance(multi_genes, type(None)) and Updated_tab2:
        if Choice=='Gene Set':
            multi_genes = np.sort(multi_genes)
        else:
            multi_genes=st.session_state['go_table'].loc[:,go_term]
            multi_genes=multi_genes.dropna().values
            multi_genes=np.sort(multi_genes)
        #multi_genes=['WNT3', 'VPS13C', 'VAMP4', 'UBTF', 'UBAP2', 'TMEM175', 'TMEM163', 'SYT17', 'STK39', 'SPPL2B', 'SIPA1L2', 'SH3GL2', 'SCARB2', 'SCAF11', 'RPS6KL1', 'RPS12', 'RIT2', 'RIMS1', 'RETREG3', 'PMVK', 'PAM', 'NOD2', 'MIPOL1', 'MEX3C', 'MED12L', 'MCCC1', 'MBNL2', 'MAPT', 'LRRK2', 'KRTCAP2', 'KCNS3', 'KCNIP3', 'ITGA8', 'IP6K2', 'GPNMB', 'GCH1', 'GBA', 'FYN', 'FCGR2A', 'FBRSL1', 'FAM49B', 'FAM171A2', 'ELOVL7', 'DYRK1A', 'DNAH17', 'DLG2', 'CTSB', 'CRLS1', 'CRHR1', 'CLCN3', 'CHRNB1', 'CAMK2D', 'CAB39L', 'BRIP1', 'BIN3', 'ASXL3', 'SNCA']
        ######### THIS IS FOR CLUSTERMAP
            # figxx = plt.subplots(figsize=(5, 5))
            # hmpdat=st.session_state['adata_annot'][:, multi_genes] #.to_df()
            # #st.write(hmpdat)
            # samples=hmpdat.obs.new_anno
            # dfh = pd.DataFrame(hmpdat.X.toarray(), columns = multi_genes)
            # dfh=dfh.T
            # dfh.columns=samples.values.to_list()
            # sns.clustermap(dfh)
            # st.pyplot(plt.gcf())  
        ######
        
        #col1,col2= st.columns([1,1])
        #fig_szx=2*len(st.session_state['cell_type'])
        #fig_szy=100*len(multi_genes)
        #with col1:
        fig11, axx11 = plt.subplots(figsize=(5, 5))
        #sc.pl.umap(st.session_state['adata_annot'], color='new_anno', title='', legend_loc='on data',legend_fontsize='8', frameon=False,show=False, ax=axx11)
        axx11=sc.pl.dotplot(st.session_state['adata_annot'], multi_genes,'new_anno',size_title='Fraction of\n Expressing Cells',colorbar_title='Mean\nExpression',cmap='BuPu',swap_axes=True,show=False,vmax=5)
        #st.pyplot(fig11)      
        #st.pyplot(plt.gcf().set_size_inches(fig_szx, fig_szy))  
        st.pyplot(plt.gcf())  
#        with col2:
        fig12, axx12 = plt.subplots(figsize=(5, 5))
        
        #sc.pl.umap(st.session_state['adata_annot'], color='new_anno', title='', legend_loc='on data', frameon=False,show=False, ax=axx2)
        #sc.pl.umap(st.session_state['adata_annot'], color=selected_gene, title=selected_gene, legend_loc='best', frameon=False,show=False,legend_fontsize='xx-small', ax=axx12)#,vmax='p99')
        axx12=sc.pl.heatmap(st.session_state['adata_annot'], multi_genes, groupby='new_anno', vmin=-1, vmax=1, cmap='BuPu', dendrogram=True, swap_axes=True, show_gene_labels=True,var_group_rotation=45)#,ax=ax2)
        plt.xticks(rotation = 45)
        #plt.xticks(rotation = 45)
        #st.pyplot(fig12)      
        #st.pyplot(plt.gcf().set_size_inches(fig_szx, fig_szy))    
        st.pyplot(plt.gcf())   
            
        #######
        
        #multi_genes=['WNT3', 'VPS13C', 'VAMP4', 'UBTF', 'UBAP2', 'TMEM175', 'TMEM163', 'SYT17', 'STK39', 'SPPL2B', 'SIPA1L2', 'SH3GL2', 'SCARB2', 'SCAF11', 'RPS6KL1', 'RPS12', 'RIT2', 'RIMS1', 'RETREG3', 'PMVK', 'PAM', 'NOD2', 'MIPOL1', 'MEX3C', 'MED12L', 'MCCC1', 'MBNL2', 'MAPT', 'LRRK2', 'KRTCAP2', 'KCNS3', 'KCNIP3', 'ITGA8', 'IP6K2', 'GPNMB', 'GCH1', 'GBA', 'FYN', 'FCGR2A', 'FBRSL1', 'FAM49B', 'FAM171A2', 'ELOVL7', 'DYRK1A', 'DNAH17', 'DLG2', 'CTSB', 'CRLS1', 'CRHR1', 'CLCN3', 'CHRNB1', 'CAMK2D', 'CAB39L', 'BRIP1', 'BIN3', 'ASXL3', 'SNCA']
        #multi_genes=np.sort(multi_genes)
        # fig, ax1 = plt.subplots(1,2)
        # sc.pl.dotplot(st.session_state['adata_annot'], multi_genes,'new_anno',size_title='Fraction of\n Expressing Cells',colorbar_title='Mean\nExpression',cmap='RdBu_r',show=False, ax=ax1[0])
        # st.pyplot(plt.gcf().set_size_inches(10, 10))
        # fig, ax2 = plt.subplots(1,2)
        # ax2=sc.pl.heatmap(st.session_state['adata_annot'], multi_genes, 'new_anno', vmin=-1, vmax=1, cmap='RdBu_r', dendrogram=True, swap_axes=True)
        # st.pyplot(plt.gcf().set_size_inches(10, 10))
        #ax[0]=sc.pl.dotplot(st.session_state['adata_annot'],multi_genes,'new_anno',show=False)
        #fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(20,4), gridspec_kw={'wspace':0.9})
     
     
     
        #commented these-working ones
     
        # fig, (ax1) = plt.subplots(1, 1, figsize=(20,4), gridspec_kw={'wspace':0.9})
        # #ax = plt.subplot()
        # ax1_dict=sc.pl.dotplot(st.session_state['adata_annot'], multi_genes,'new_anno',size_title='Fraction of\n Expressing Cells',colorbar_title='Mean\nExpression',cmap='BuPu',swap_axes=True,show=False, ax=ax1,vmax=5)
        # #ax_dict=sc.pl.dotplot(st.session_state['adata_annot'], multi_genes,'new_anno',size_title='Fraction of\n Expressing Cells',colorbar_title='Mean\nExpression',cmap='RdBu_r',swap_axes=True,show=False, ax=ax)
        # st.pyplot(plt.gcf().set_size_inches(10, 15))
        # #ax2_dict=sc.pl.dotplot(st.session_state['adata_annot'], multi_genes,'Sex',size_title='Fraction of\n Expressing Cells',colorbar_title='Mean\nExpression',cmap='RdBu_r',swap_axes=True,show=False, ax=ax2)
        # fig, (ax2) = plt.subplots(1, 1, figsize=(20,4), gridspec_kw={'wspace':0.9})
        # #ax2_dict=sc.pl.matrixplot(st.session_state['adata_annot'], multi_genes, 'new_anno', vmin=-1, vmax=1, show=False, cmap='BuPu',dendrogram=True, swap_axes=True, ax=ax2)
        
        # #sc.pl.heatmap(adata_annot, genes_lst, groupby='new_anno', vmin=-1, vmax=1, cmap='RdBu_r', dendrogram=True, swap_axes=True, figsize=(11,4))
        # ax2_dict=sc.pl.heatmap(st.session_state['adata_annot'], multi_genes, groupby='new_anno', vmin=-1, vmax=1, cmap='BuPu', dendrogram=True, swap_axes=True)#,ax=ax2)
        
        # st.pyplot(plt.gcf().set_size_inches(10, 15))
        
    
with readme:
    expander = st.expander("How to use this app")   
    #st.header('How to use this app')
    expander.markdown('Please select **Results Menue** checkbox from the sidebar')
    expander.markdown('Select a Gene from the dropdown list')
    expander.markdown('A table showing all reference gudies from three LISTS will appear in the main panel')
    expander.markdown('To see results for each of the selected reference guide from ListA, ListB and ListC, Please select respective checkbox')
    expander.markdown('Results are shown as two tables, **MATCHED** and **MUTATED** guides tables and **NOT FOUND** table if guides are not found in GRCh38 and LR reference fasta files')
    expander.markdown('**MATCHED** guides table shows the genomic postion in GRCh38 and LR Fasta file along other fields. **If a guide is found in GRCh38 but not in LR fasta, then corresponding columns will be NA**')
    expander.markdown('**MUTATED** guides table shows the genomic postion in GRCh38 and LR Fasta file along other fields. **If a guide is found in GRCh38 but not in LR fasta, then corresponding columns will be NA**')
    
    expander1 = st.expander('Introduction')
    
    expander1.markdown(
        """ This app helps navigate all probable genomic **miss-matched/Mutations (upto 2 bp)** for a given sgRNA (from 3 lists of CRISPRi dual sgRNA libraries) in GRCh38 reference fasta and a Reference fasta generated from BAM generated against KOLF2.1J longread data.
            """
            )
    expander1.markdown('Merged bam file was converted to fasta file using following steps:')
    expander1.markdown('- samtools mpileup to generate bcf file')
    expander1.markdown('- bcftools to generate vcf file')
    expander1.markdown('- bcftools consensus to generate fasta file')
    expander1.markdown('A GPU based [Cas-OFFinder](http://www.rgenome.net/cas-offinder/) tool was used to find off-target sequences (upto 2 miss-matched) for each geiven reference guide against GRCh38 and LR fasta references.')

css = '''
<style>
    .stTabs [data-baseweb="tab-list"] button [data-testid="stMarkdownContainer"] p {
    font-size:1.5rem;
    }
</style>
'''

st.markdown(css, unsafe_allow_html=True)