syedaoon commited on
Commit
f59598d
Β·
verified Β·
1 Parent(s): 97d5ae0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +100 -1
README.md CHANGED
@@ -1,2 +1,101 @@
1
- ZERO-IG
 
 
 
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: ZeroIG Low-Light Enhancement
3
+ emoji: 🌟
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 4.44.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
 
13
+ # ZeroIG: Zero-Shot Illumination-Guided Joint Denoising and Adaptive Enhancement
14
+
15
+ πŸŽ‰ **CVPR 2024** | Zero-shot low-light image enhancement without training data
16
+
17
+ ## πŸš€ Quick Start
18
+
19
+ Upload a low-light image and get an enhanced version in seconds! No training required.
20
+
21
+ ## πŸ“– About
22
+
23
+ This space implements **ZeroIG**, a novel zero-shot method for jointly denoising and enhancing low-light images. The method is completely independent of training data and noise distribution.
24
+
25
+ ### ✨ Key Features
26
+
27
+ - **Zero-shot**: No training data required
28
+ - **Joint processing**: Simultaneous denoising and enhancement
29
+ - **Illumination-guided**: Smart adaptive enhancement
30
+ - **Prevents artifacts**: Avoids over-enhancement and localized overexposure
31
+ - **Real-time**: Fast processing for practical use
32
+
33
+ ### πŸ”¬ How it Works
34
+
35
+ 1. **Illumination Estimation**: Extracts near-authentic illumination from the input
36
+ 2. **Adaptive Enhancement**: Applies different enhancement levels based on pixel intensity
37
+ 3. **Joint Denoising**: Removes noise while preserving image details
38
+ 4. **Artifact Prevention**: Prevents common enhancement artifacts
39
+
40
+ ## πŸ“Š Performance
41
+
42
+ ZeroIG outperforms state-of-the-art methods on standard benchmarks while requiring no training data.
43
+
44
+ ## 🎯 Use Cases
45
+
46
+ - **Photography**: Rescue underexposed photos
47
+ - **Security**: Enhance surveillance footage
48
+ - **Mobile**: Real-time camera enhancement
49
+ - **Medical**: Improve low-light medical imaging
50
+ - **Astronomy**: Enhance night sky photography
51
+
52
+ ## πŸ–ΌοΈ Supported Formats
53
+
54
+ - JPEG, PNG, TIFF, BMP
55
+ - RGB color images
56
+ - Various resolutions (optimized for typical photo sizes)
57
+
58
+ ## ⚑ Tips for Best Results
59
+
60
+ - Works best with real low-light photos (not artificially darkened)
61
+ - Indoor and outdoor scenes both supported
62
+ - Processing time varies with image size (typically 10-30 seconds)
63
+
64
+ ## πŸ“š Citation
65
+
66
+ If you use this work, please cite:
67
+
68
+ ```bibtex
69
+ @inproceedings{shi2024zero,
70
+ title={ZERO-IG: Zero-Shot Illumination-Guided Joint Denoising and Adaptive Enhancement for Low-Light Images},
71
+ author={Shi, Yiqi and Liu, Duo and Zhang, Liguo and Tian, Ye and Xia, Xuezhi and Fu, Xiaojing},
72
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
73
+ pages={3015--3024},
74
+ year={2024}
75
+ }
76
+ ```
77
+
78
+ ## πŸ”— Links
79
+
80
+ - πŸ“„ [Paper](https://openaccess.thecvf.com/content/CVPR2024/papers/Shi_ZERO-IG_Zero-Shot_Illumination-Guided_Joint_Denoising_and_Adaptive_Enhancement_for_Low-Light_CVPR_2024_paper.pdf)
81
+ - πŸ’» [Code](https://github.com/Doyle59217/ZeroIG)
82
+ - πŸ“Š [Supplement](https://openaccess.thecvf.com/content/CVPR2024/supplemental/Shi_ZERO-IG_Zero-Shot_Illumination-Guided_CVPR_2024_supplemental.pdf)
83
+
84
+ ## πŸ› οΈ Technical Details
85
+
86
+ - **Framework**: PyTorch
87
+ - **CUDA**: Supported for GPU acceleration
88
+ - **Memory**: Optimized for various image sizes
89
+ - **Dependencies**: See requirements.txt
90
+
91
+ ## πŸ‘₯ Authors
92
+
93
+ Yiqi Shi, Duo Liu, Liguo Zhang, Ye Tian, Xuezhi Xia, Xiaojing Fu
94
+
95
+ ## πŸ“„ License
96
+
97
+ MIT License - see LICENSE file for details
98
+
99
+ ---
100
+
101
+ *Built with ❀️ using Gradio and Hugging Face Spaces*