Update model.py
Browse files
model.py
CHANGED
@@ -1,207 +1,212 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from loss import LossFunction, TextureDifference
|
4 |
-
from utils import blur, pair_downsampler
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
class Denoise_1(nn.Module):
|
9 |
-
def __init__(self, chan_embed=48):
|
10 |
-
super(Denoise_1, self).__init__()
|
11 |
-
|
12 |
-
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
13 |
-
self.conv1 = nn.Conv2d(3, chan_embed, 3, padding=1)
|
14 |
-
self.conv2 = nn.Conv2d(chan_embed, chan_embed, 3, padding=1)
|
15 |
-
self.conv3 = nn.Conv2d(chan_embed, 3, 1)
|
16 |
-
|
17 |
-
def forward(self, x):
|
18 |
-
x = self.act(self.conv1(x))
|
19 |
-
x = self.act(self.conv2(x))
|
20 |
-
x = self.conv3(x)
|
21 |
-
return x
|
22 |
-
|
23 |
-
|
24 |
-
class Denoise_2(nn.Module):
|
25 |
-
def __init__(self, chan_embed=96):
|
26 |
-
super(Denoise_2, self).__init__()
|
27 |
-
|
28 |
-
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
29 |
-
self.conv1 = nn.Conv2d(6, chan_embed, 3, padding=1)
|
30 |
-
self.conv2 = nn.Conv2d(chan_embed, chan_embed, 3, padding=1)
|
31 |
-
self.conv3 = nn.Conv2d(chan_embed, 6, 1)
|
32 |
-
|
33 |
-
def forward(self, x):
|
34 |
-
x = self.act(self.conv1(x))
|
35 |
-
x = self.act(self.conv2(x))
|
36 |
-
x = self.conv3(x)
|
37 |
-
return x
|
38 |
-
|
39 |
-
|
40 |
-
class Enhancer(nn.Module):
|
41 |
-
def __init__(self, layers, channels):
|
42 |
-
super(Enhancer, self).__init__()
|
43 |
-
|
44 |
-
kernel_size = 3
|
45 |
-
dilation = 1
|
46 |
-
padding = int((kernel_size - 1) / 2) * dilation
|
47 |
-
|
48 |
-
self.in_conv = nn.Sequential(
|
49 |
-
nn.Conv2d(in_channels=3, out_channels=channels, kernel_size=kernel_size, stride=1, padding=padding),
|
50 |
-
nn.ReLU()
|
51 |
-
)
|
52 |
-
|
53 |
-
self.conv = nn.Sequential(
|
54 |
-
nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=kernel_size, stride=1, padding=padding),
|
55 |
-
nn.BatchNorm2d(channels),
|
56 |
-
nn.ReLU()
|
57 |
-
)
|
58 |
-
self.blocks = nn.ModuleList()
|
59 |
-
for i in range(layers):
|
60 |
-
self.blocks.append(self.conv)
|
61 |
-
|
62 |
-
self.out_conv = nn.Sequential(
|
63 |
-
nn.Conv2d(in_channels=channels, out_channels=3, kernel_size=3, stride=1, padding=1),
|
64 |
-
nn.Sigmoid()
|
65 |
-
)
|
66 |
-
|
67 |
-
def forward(self, input):
|
68 |
-
fea = self.in_conv(input)
|
69 |
-
for conv in self.blocks:
|
70 |
-
fea = fea + conv(fea)
|
71 |
-
fea = self.out_conv(fea)
|
72 |
-
fea = torch.clamp(fea, 0.0001, 1)
|
73 |
-
|
74 |
-
return fea
|
75 |
-
|
76 |
-
|
77 |
-
class Network(nn.Module):
|
78 |
-
|
79 |
-
def __init__(self):
|
80 |
-
super(Network, self).__init__()
|
81 |
-
|
82 |
-
self.enhance = Enhancer(layers=3, channels=64)
|
83 |
-
self.denoise_1 = Denoise_1(chan_embed=48)
|
84 |
-
self.denoise_2 = Denoise_2(chan_embed=48)
|
85 |
-
self._l2_loss = nn.MSELoss()
|
86 |
-
self._l1_loss = nn.L1Loss()
|
87 |
-
self._criterion = LossFunction()
|
88 |
-
self.avgpool = nn.AvgPool2d(kernel_size=3, stride=1, padding=1)
|
89 |
-
self.TextureDifference = TextureDifference()
|
90 |
-
|
91 |
-
|
92 |
-
def enhance_weights_init(self, m):
|
93 |
-
if isinstance(m, nn.Conv2d):
|
94 |
-
m.weight.data.normal_(0.0, 0.02)
|
95 |
-
if m.bias != None:
|
96 |
-
m.bias.data.zero_()
|
97 |
-
|
98 |
-
if isinstance(m, nn.BatchNorm2d):
|
99 |
-
m.weight.data.normal_(1., 0.02)
|
100 |
-
|
101 |
-
def denoise_weights_init(self, m):
|
102 |
-
if isinstance(m, nn.Conv2d):
|
103 |
-
m.weight.data.normal_(0, 0.02)
|
104 |
-
if m.bias != None:
|
105 |
-
m.bias.data.zero_()
|
106 |
-
|
107 |
-
if isinstance(m, nn.BatchNorm2d):
|
108 |
-
m.weight.data.normal_(1., 0.02)
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
H2_blur
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
loss
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from loss import LossFunction, TextureDifference
|
4 |
+
from utils import blur, pair_downsampler
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
class Denoise_1(nn.Module):
|
9 |
+
def __init__(self, chan_embed=48):
|
10 |
+
super(Denoise_1, self).__init__()
|
11 |
+
|
12 |
+
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
13 |
+
self.conv1 = nn.Conv2d(3, chan_embed, 3, padding=1)
|
14 |
+
self.conv2 = nn.Conv2d(chan_embed, chan_embed, 3, padding=1)
|
15 |
+
self.conv3 = nn.Conv2d(chan_embed, 3, 1)
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
x = self.act(self.conv1(x))
|
19 |
+
x = self.act(self.conv2(x))
|
20 |
+
x = self.conv3(x)
|
21 |
+
return x
|
22 |
+
|
23 |
+
|
24 |
+
class Denoise_2(nn.Module):
|
25 |
+
def __init__(self, chan_embed=96):
|
26 |
+
super(Denoise_2, self).__init__()
|
27 |
+
|
28 |
+
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
29 |
+
self.conv1 = nn.Conv2d(6, chan_embed, 3, padding=1)
|
30 |
+
self.conv2 = nn.Conv2d(chan_embed, chan_embed, 3, padding=1)
|
31 |
+
self.conv3 = nn.Conv2d(chan_embed, 6, 1)
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
x = self.act(self.conv1(x))
|
35 |
+
x = self.act(self.conv2(x))
|
36 |
+
x = self.conv3(x)
|
37 |
+
return x
|
38 |
+
|
39 |
+
|
40 |
+
class Enhancer(nn.Module):
|
41 |
+
def __init__(self, layers, channels):
|
42 |
+
super(Enhancer, self).__init__()
|
43 |
+
|
44 |
+
kernel_size = 3
|
45 |
+
dilation = 1
|
46 |
+
padding = int((kernel_size - 1) / 2) * dilation
|
47 |
+
|
48 |
+
self.in_conv = nn.Sequential(
|
49 |
+
nn.Conv2d(in_channels=3, out_channels=channels, kernel_size=kernel_size, stride=1, padding=padding),
|
50 |
+
nn.ReLU()
|
51 |
+
)
|
52 |
+
|
53 |
+
self.conv = nn.Sequential(
|
54 |
+
nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=kernel_size, stride=1, padding=padding),
|
55 |
+
nn.BatchNorm2d(channels),
|
56 |
+
nn.ReLU()
|
57 |
+
)
|
58 |
+
self.blocks = nn.ModuleList()
|
59 |
+
for i in range(layers):
|
60 |
+
self.blocks.append(self.conv)
|
61 |
+
|
62 |
+
self.out_conv = nn.Sequential(
|
63 |
+
nn.Conv2d(in_channels=channels, out_channels=3, kernel_size=3, stride=1, padding=1),
|
64 |
+
nn.Sigmoid()
|
65 |
+
)
|
66 |
+
|
67 |
+
def forward(self, input):
|
68 |
+
fea = self.in_conv(input)
|
69 |
+
for conv in self.blocks:
|
70 |
+
fea = fea + conv(fea)
|
71 |
+
fea = self.out_conv(fea)
|
72 |
+
fea = torch.clamp(fea, 0.0001, 1)
|
73 |
+
|
74 |
+
return fea
|
75 |
+
|
76 |
+
|
77 |
+
class Network(nn.Module):
|
78 |
+
|
79 |
+
def __init__(self):
|
80 |
+
super(Network, self).__init__()
|
81 |
+
|
82 |
+
self.enhance = Enhancer(layers=3, channels=64)
|
83 |
+
self.denoise_1 = Denoise_1(chan_embed=48)
|
84 |
+
self.denoise_2 = Denoise_2(chan_embed=48)
|
85 |
+
self._l2_loss = nn.MSELoss()
|
86 |
+
self._l1_loss = nn.L1Loss()
|
87 |
+
self._criterion = LossFunction()
|
88 |
+
self.avgpool = nn.AvgPool2d(kernel_size=3, stride=1, padding=1)
|
89 |
+
self.TextureDifference = TextureDifference()
|
90 |
+
|
91 |
+
|
92 |
+
def enhance_weights_init(self, m):
|
93 |
+
if isinstance(m, nn.Conv2d):
|
94 |
+
m.weight.data.normal_(0.0, 0.02)
|
95 |
+
if m.bias != None:
|
96 |
+
m.bias.data.zero_()
|
97 |
+
|
98 |
+
if isinstance(m, nn.BatchNorm2d):
|
99 |
+
m.weight.data.normal_(1., 0.02)
|
100 |
+
|
101 |
+
def denoise_weights_init(self, m):
|
102 |
+
if isinstance(m, nn.Conv2d):
|
103 |
+
m.weight.data.normal_(0, 0.02)
|
104 |
+
if m.bias != None:
|
105 |
+
m.bias.data.zero_()
|
106 |
+
|
107 |
+
if isinstance(m, nn.BatchNorm2d):
|
108 |
+
m.weight.data.normal_(1., 0.02)
|
109 |
+
|
110 |
+
def forward(self, input):
|
111 |
+
eps = 1e-4
|
112 |
+
input = input + eps
|
113 |
+
|
114 |
+
L11, L12 = pair_downsampler(input)
|
115 |
+
L_pred1 = L11 - self.denoise_1(L11)
|
116 |
+
L_pred2 = L12 - self.denoise_1(L12)
|
117 |
+
L2 = input - self.denoise_1(input)
|
118 |
+
L2 = torch.clamp(L2, eps, 1)
|
119 |
+
|
120 |
+
s2 = self.enhance(L2.detach())
|
121 |
+
s21, s22 = pair_downsampler(s2)
|
122 |
+
H2 = input / s2
|
123 |
+
H2 = torch.clamp(H2, eps, 1)
|
124 |
+
|
125 |
+
H11 = L11 / s21
|
126 |
+
H11 = torch.clamp(H11, eps, 1)
|
127 |
+
|
128 |
+
H12 = L12 / s22
|
129 |
+
H12 = torch.clamp(H12, eps, 1)
|
130 |
+
|
131 |
+
H3_pred = torch.cat([H11, s21], 1).detach() - self.denoise_2(torch.cat([H11, s21], 1))
|
132 |
+
H3_pred = torch.clamp(H3_pred, eps, 1)
|
133 |
+
H13 = H3_pred[:, :3, :, :]
|
134 |
+
s13 = H3_pred[:, 3:, :, :]
|
135 |
+
|
136 |
+
H4_pred = torch.cat([H12, s22], 1).detach() - self.denoise_2(torch.cat([H12, s22], 1))
|
137 |
+
H4_pred = torch.clamp(H4_pred, eps, 1)
|
138 |
+
H14 = H4_pred[:, :3, :, :]
|
139 |
+
s14 = H4_pred[:, 3:, :, :]
|
140 |
+
|
141 |
+
H5_pred = torch.cat([H2, s2], 1).detach() - self.denoise_2(torch.cat([H2, s2], 1))
|
142 |
+
H5_pred = torch.clamp(H5_pred, eps, 1)
|
143 |
+
H3 = H5_pred[:, :3, :, :]
|
144 |
+
s3 = H5_pred[:, 3:, :, :]
|
145 |
+
|
146 |
+
L_pred1_L_pred2_diff = self.TextureDifference(L_pred1, L_pred2)
|
147 |
+
H3_denoised1, H3_denoised2 = pair_downsampler(H3)
|
148 |
+
H3_denoised1_H3_denoised2_diff= self.TextureDifference(H3_denoised1, H3_denoised2)
|
149 |
+
|
150 |
+
H1 = L2 / s2
|
151 |
+
H1 = torch.clamp(H1, 0, 1)
|
152 |
+
H2_blur = blur(H1)
|
153 |
+
H3_blur = blur(H3)
|
154 |
+
|
155 |
+
return L_pred1, L_pred2, L2, s2, s21, s22, H2, H11, H12, H13, s13, H14, s14, H3, s3, H3_pred, H4_pred, L_pred1_L_pred2_diff, H3_denoised1_H3_denoised2_diff, H2_blur, H3_blur
|
156 |
+
|
157 |
+
def _loss(self, input):
|
158 |
+
L_pred1, L_pred2, L2, s2, s21, s22, H2, H11, H12, H13, s13, H14, s14, H3, s3, H3_pred, H4_pred, L_pred1_L_pred2_diff, H3_denoised1_H3_denoised2_diff, H2_blur, H3_blur = self(
|
159 |
+
input)
|
160 |
+
loss = 0
|
161 |
+
|
162 |
+
loss += self._criterion(input, L_pred1, L_pred2, L2, s2, s21, s22, H2, H11, H12, H13, s13, H14, s14, H3, s3,
|
163 |
+
H3_pred, H4_pred, L_pred1_L_pred2_diff, H3_denoised1_H3_denoised2_diff, H2_blur,
|
164 |
+
H3_blur)
|
165 |
+
return loss
|
166 |
+
|
167 |
+
|
168 |
+
class Finetunemodel(nn.Module):
|
169 |
+
|
170 |
+
def __init__(self, weights):
|
171 |
+
super(Finetunemodel, self).__init__()
|
172 |
+
|
173 |
+
self.enhance = Enhancer(layers=3, channels=64)
|
174 |
+
self.denoise_1 = Denoise_1(chan_embed=48)
|
175 |
+
self.denoise_2 = Denoise_2(chan_embed=48)
|
176 |
+
|
177 |
+
# CPU/GPU compatible loading
|
178 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
179 |
+
|
180 |
+
try:
|
181 |
+
base_weights = torch.load(weights, map_location=device)
|
182 |
+
pretrained_dict = base_weights
|
183 |
+
model_dict = self.state_dict()
|
184 |
+
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
|
185 |
+
model_dict.update(pretrained_dict)
|
186 |
+
self.load_state_dict(model_dict)
|
187 |
+
print(f"✅ Loaded weights from {weights} on {device}")
|
188 |
+
except Exception as e:
|
189 |
+
print(f"⚠️ Could not load weights: {e}")
|
190 |
+
print("Using random initialization")
|
191 |
+
|
192 |
+
def weights_init(self, m):
|
193 |
+
if isinstance(m, nn.Conv2d):
|
194 |
+
m.weight.data.normal_(0, 0.02)
|
195 |
+
if m.bias is not None:
|
196 |
+
m.bias.data.zero_()
|
197 |
+
|
198 |
+
if isinstance(m, nn.BatchNorm2d):
|
199 |
+
m.weight.data.normal_(1., 0.02)
|
200 |
+
|
201 |
+
def forward(self, input):
|
202 |
+
eps = 1e-4
|
203 |
+
input = input + eps
|
204 |
+
L2 = input - self.denoise_1(input)
|
205 |
+
L2 = torch.clamp(L2, eps, 1)
|
206 |
+
s2 = self.enhance(L2)
|
207 |
+
H2 = input / s2
|
208 |
+
H2 = torch.clamp(H2, eps, 1)
|
209 |
+
H5_pred = torch.cat([H2, s2], 1).detach() - self.denoise_2(torch.cat([H2, s2], 1))
|
210 |
+
H5_pred = torch.clamp(H5_pred, eps, 1)
|
211 |
+
H3 = H5_pred[:, :3, :, :]
|
212 |
+
return H2, H3
|