File size: 9,778 Bytes
d59f3c4 882d716 ccbc0a0 d59f3c4 2d074f9 882d716 ccbc0a0 eae91d6 ccbc0a0 d59f3c4 eae91d6 ccbc0a0 d59f3c4 ccbc0a0 d59f3c4 ccbc0a0 eae91d6 ccbc0a0 eae91d6 ccbc0a0 d59f3c4 ccbc0a0 d59f3c4 eae91d6 d59f3c4 eae91d6 d59f3c4 ccbc0a0 a753f35 eae91d6 d59f3c4 eae91d6 d59f3c4 eae91d6 d59f3c4 eae91d6 d59f3c4 eae91d6 d59f3c4 eae91d6 d59f3c4 eae91d6 d59f3c4 eae91d6 d59f3c4 eae91d6 d59f3c4 eae91d6 d59f3c4 eae91d6 d59f3c4 eae91d6 d59f3c4 2bf5132 ccbc0a0 d59f3c4 ccbc0a0 d59f3c4 ccbc0a0 eae91d6 d59f3c4 ccbc0a0 d59f3c4 eae91d6 ccbc0a0 eae91d6 d59f3c4 ccbc0a0 eae91d6 d59f3c4 eae91d6 d59f3c4 2bf5132 ccbc0a0 eae91d6 ccbc0a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
from flask import Flask, request, render_template_string
from PIL import Image
import numpy as np
import io
import base64
import torch
import torchvision.transforms as transforms
import os
import sys
app = Flask(__name__)
HTML_TEMPLATE = """
<!DOCTYPE html>
<html>
<head>
<title>ZeroIG Enhancement - Debug</title>
<style>
body { font-family: Arial, sans-serif; max-width: 1000px; margin: 0 auto; padding: 20px; }
.debug { background: #f0f0f0; padding: 15px; margin: 10px 0; border-radius: 5px; font-family: monospace; }
.container { text-align: center; }
.upload-area { border: 2px dashed #ccc; padding: 40px; margin: 20px 0; border-radius: 10px; }
.result { margin-top: 20px; }
.comparison { display: flex; justify-content: space-around; flex-wrap: wrap; }
.image-container { margin: 10px; }
img { max-width: 400px; height: auto; border: 1px solid #ddd; border-radius: 5px; }
.status { color: green; font-weight: bold; margin: 10px 0; }
.error { color: red; }
</style>
</head>
<body>
<div class="container">
<h1>π§ ZeroIG Debug Mode</h1>
<div class="debug">
<h3>π File Check:</h3>
{{ file_status }}
</div>
<div class="debug">
<h3>π Import Status:</h3>
{{ import_status }}
</div>
<form method="post" enctype="multipart/form-data">
<div class="upload-area">
<input type="file" name="image" accept="image/*" required>
<br><br>
<button type="submit" style="padding: 10px 20px; font-size: 16px;">π§ͺ Test Enhancement</button>
</div>
</form>
{% if status %}
<div class="status">{{ status }}</div>
{% endif %}
{% if error %}
<div class="error">{{ error }}</div>
{% endif %}
{% if original_image and result_image %}
<div class="result">
<h3>Results:</h3>
<div class="comparison">
<div class="image-container">
<h4>Original</h4>
<img src="data:image/png;base64,{{ original_image }}" alt="Original">
</div>
<div class="image-container">
<h4>Enhanced</h4>
<img src="data:image/png;base64,{{ result_image }}" alt="Enhanced">
</div>
</div>
</div>
{% endif %}
</div>
</body>
</html>
"""
def check_files():
"""Check what files are available"""
status = []
# Check current directory files
files_in_dir = os.listdir('.')
status.append(f"Files in current directory: {files_in_dir}")
# Check specific ZeroIG files
required_files = ['model.py', 'loss.py', 'utils.py']
for file in required_files:
if os.path.exists(file):
status.append(f"β
{file} - EXISTS")
# Check file size
size = os.path.getsize(file)
status.append(f" Size: {size} bytes")
else:
status.append(f"β {file} - MISSING")
# Check weights directory
if os.path.exists('weights'):
weights_files = os.listdir('weights')
status.append(f"π weights/ directory: {weights_files}")
else:
status.append("π weights/ directory: NOT FOUND")
return "<br>".join(status)
def check_imports():
"""Try importing ZeroIG modules and report results"""
status = []
try:
# Add current directory to path
import sys
sys.path.insert(0, '.')
status.append("β
Added current directory to Python path")
# Try importing each module
try:
import model
status.append("β
Successfully imported 'model' module")
# Check what's in the model module
model_contents = dir(model)
status.append(f" model module contents: {model_contents}")
# Try to access specific classes
if hasattr(model, 'Network'):
status.append("β
Found Network class")
else:
status.append("β Network class not found")
if hasattr(model, 'Finetunemodel'):
status.append("β
Found Finetunemodel class")
else:
status.append("β Finetunemodel class not found")
except Exception as e:
status.append(f"β Failed to import model: {e}")
try:
import loss
status.append("β
Successfully imported 'loss' module")
except Exception as e:
status.append(f"β Failed to import loss: {e}")
try:
import utils
status.append("β
Successfully imported 'utils' module")
except Exception as e:
status.append(f"β Failed to import utils: {e}")
except Exception as e:
status.append(f"β General import error: {e}")
return "<br>".join(status)
def try_create_model():
"""Try to create ZeroIG model and report what happens"""
try:
sys.path.insert(0, '.')
from model import Network, Finetunemodel
# Try creating Network
network = Network()
print("β
Successfully created Network model")
# Try creating Finetunemodel (this will fail without weights, but should show the error)
try:
finetuned = Finetunemodel("./weights/model.pt")
print("β
Successfully created Finetunemodel")
return finetuned, "Finetunemodel"
except Exception as e:
print(f"β οΈ Finetunemodel failed (expected without weights): {e}")
print("β
Using Network model instead")
return network, "Network"
except Exception as e:
print(f"β Model creation failed: {e}")
import traceback
traceback.print_exc()
return None, f"Failed: {e}"
# Try to load model on startup
print("π Starting ZeroIG debug app...")
print("π Checking files...")
file_check = check_files()
print("π Checking imports...")
import_check = check_imports()
# Try to create model
print("π€ Trying to create model...")
model, model_status = try_create_model()
def simple_enhance(image):
"""Fallback enhancement"""
arr = np.array(image).astype(np.float32)
enhanced = np.clip(arr * 1.5, 0, 255).astype(np.uint8)
return Image.fromarray(enhanced)
def image_to_base64(image):
"""Convert PIL image to base64"""
img_buffer = io.BytesIO()
image.save(img_buffer, format='PNG')
img_str = base64.b64encode(img_buffer.getvalue()).decode()
return img_str
@app.route('/', methods=['GET', 'POST'])
def index():
original_image = None
result_image = None
status = None
error = None
if request.method == 'POST':
try:
file = request.files['image']
if file:
print(f"Processing: {file.filename}")
image = Image.open(file.stream).convert('RGB')
original_image = image_to_base64(image)
if model is not None:
# Try using the actual model
try:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
model.eval()
transform = transforms.ToTensor()
input_tensor = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
if hasattr(model, 'enhance') and hasattr(model, 'denoise_1'):
enhanced, denoised = model(input_tensor)
result_tensor = denoised
else:
outputs = model(input_tensor)
result_tensor = outputs[13]
result_tensor = result_tensor.squeeze(0).cpu().clamp(0, 1)
enhanced_image = transforms.ToPILImage()(result_tensor)
result_image = image_to_base64(enhanced_image)
status = f"β
Used {model_status} model successfully!"
except Exception as e:
print(f"Model processing error: {e}")
enhanced_image = simple_enhance(image)
result_image = image_to_base64(enhanced_image)
status = f"β οΈ Model failed, used simple enhancement: {e}"
else:
enhanced_image = simple_enhance(image)
result_image = image_to_base64(enhanced_image)
status = "β οΈ No model available, used simple enhancement"
except Exception as e:
error = f"Error: {e}"
print(f"Error: {e}")
return render_template_string(HTML_TEMPLATE,
file_status=file_check,
import_status=import_check,
original_image=original_image,
result_image=result_image,
status=status,
error=error)
if __name__ == '__main__':
print("π Debug app ready!")
app.run(host='0.0.0.0', port=7860) |