File size: 9,528 Bytes
9e2bd42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import torch
import torch.nn as nn
import torch.nn.functional as F
def pair_downsampler(img):
# img has shape B C H W
c = img.shape[1]
filter1 = torch.FloatTensor([[[[0, 0.5], [0.5, 0]]]]).to(img.device)
filter1 = filter1.repeat(c, 1, 1, 1)
filter2 = torch.FloatTensor([[[[0.5, 0], [0, 0.5]]]]).to(img.device)
filter2 = filter2.repeat(c, 1, 1, 1)
output1 = torch.nn.functional.conv2d(img, filter1, stride=2, groups=c)
output2 = torch.nn.functional.conv2d(img, filter2, stride=2, groups=c)
return output1, output2
def gauss_cdf(x):
return 0.5*(1+torch.erf(x/torch.sqrt(torch.tensor(2.))))
def gauss_kernel(kernlen=21, nsig=3, channels=1):
interval = (2*nsig+1.)/(kernlen)
x = torch.linspace(-nsig-interval/2., nsig+interval/2., kernlen+1).to('cuda' if torch.cuda.is_available() else 'cpu')
kern1d = torch.diff(gauss_cdf(x))
kernel_raw = torch.sqrt(torch.outer(kern1d, kern1d))
kernel = kernel_raw/torch.sum(kernel_raw)
out_filter = kernel.view(1, 1, kernlen, kernlen)
out_filter = out_filter.repeat(channels, 1, 1, 1)
return out_filter
def blur(x):
device = x.device
kernel_size = 21
padding = kernel_size // 2
kernel_var = gauss_kernel(kernel_size, 1, x.size(1)).to(device)
x_padded = torch.nn.functional.pad(x, (padding, padding, padding, padding), mode='reflect')
return torch.nn.functional.conv2d(x_padded, kernel_var, padding=0, groups=x.size(1))
class TextureDifference(nn.Module):
def __init__(self, patch_size=5, constant_C=1e-5, threshold=0.975):
super(TextureDifference, self).__init__()
self.patch_size = patch_size
self.constant_C = constant_C
self.threshold = threshold
def forward(self, image1, image2):
# Convert RGB images to grayscale
image1 = self.rgb_to_gray(image1)
image2 = self.rgb_to_gray(image2)
stddev1 = self.local_stddev(image1)
stddev2 = self.local_stddev(image2)
numerator = 2 * stddev1 * stddev2
denominator = stddev1 ** 2 + stddev2 ** 2 + self.constant_C
diff = numerator / denominator
# Apply threshold to diff tensor
binary_diff = torch.where(diff > self.threshold, torch.tensor(1.0, device=diff.device),
torch.tensor(0.0, device=diff.device))
return binary_diff
def local_stddev(self, image):
padding = self.patch_size // 2
image = F.pad(image, (padding, padding, padding, padding), mode='reflect')
patches = image.unfold(2, self.patch_size, 1).unfold(3, self.patch_size, 1)
mean = patches.mean(dim=(4, 5), keepdim=True)
squared_diff = (patches - mean) ** 2
local_variance = squared_diff.mean(dim=(4, 5))
local_stddev = torch.sqrt(local_variance+1e-9)
return local_stddev
def rgb_to_gray(self, image):
# Convert RGB image to grayscale using the luminance formula
gray_image = 0.144 * image[:, 0, :, :] + 0.5870 * image[:, 1, :, :] + 0.299 * image[:, 2, :, :]
return gray_image.unsqueeze(1) # Add a channel dimension for compatibility
class Denoise_1(nn.Module):
def __init__(self, chan_embed=48):
super(Denoise_1, self).__init__()
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=True)
self.conv1 = nn.Conv2d(3, chan_embed, 3, padding=1)
self.conv2 = nn.Conv2d(chan_embed, chan_embed, 3, padding=1)
self.conv3 = nn.Conv2d(chan_embed, 3, 1)
def forward(self, x):
x = self.act(self.conv1(x))
x = self.act(self.conv2(x))
x = self.conv3(x)
return x
class Denoise_2(nn.Module):
def __init__(self, chan_embed=96):
super(Denoise_2, self).__init__()
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=True)
self.conv1 = nn.Conv2d(6, chan_embed, 3, padding=1)
self.conv2 = nn.Conv2d(chan_embed, chan_embed, 3, padding=1)
self.conv3 = nn.Conv2d(chan_embed, 6, 1)
def forward(self, x):
x = self.act(self.conv1(x))
x = self.act(self.conv2(x))
x = self.conv3(x)
return x
class Enhancer(nn.Module):
def __init__(self, layers, channels):
super(Enhancer, self).__init__()
kernel_size = 3
dilation = 1
padding = int((kernel_size - 1) / 2) * dilation
self.in_conv = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=channels, kernel_size=kernel_size, stride=1, padding=padding),
nn.ReLU()
)
self.conv = nn.Sequential(
nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=kernel_size, stride=1, padding=padding),
nn.BatchNorm2d(channels),
nn.ReLU()
)
self.blocks = nn.ModuleList()
for i in range(layers):
self.blocks.append(self.conv)
self.out_conv = nn.Sequential(
nn.Conv2d(in_channels=channels, out_channels=3, kernel_size=3, stride=1, padding=1),
nn.Sigmoid()
)
def forward(self, input):
fea = self.in_conv(input)
for conv in self.blocks:
fea = fea + conv(fea)
fea = self.out_conv(fea)
fea = torch.clamp(fea, 0.0001, 1)
return fea
class Network(nn.Module):
def __init__(self):
super(Network, self).__init__()
self.enhance = Enhancer(layers=3, channels=64)
self.denoise_1 = Denoise_1(chan_embed=48)
self.denoise_2 = Denoise_2(chan_embed=48)
self.TextureDifference = TextureDifference()
def enhance_weights_init(self, m):
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0.0, 0.02)
if m.bias != None:
m.bias.data.zero_()
if isinstance(m, nn.BatchNorm2d):
m.weight.data.normal_(1., 0.02)
def denoise_weights_init(self, m):
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0, 0.02)
if m.bias != None:
m.bias.data.zero_()
if isinstance(m, nn.BatchNorm2d):
m.weight.data.normal_(1., 0.02)
def forward(self, input):
eps = 1e-4
input = input + eps
L11, L12 = pair_downsampler(input)
L_pred1 = L11 - self.denoise_1(L11)
L_pred2 = L12 - self.denoise_1(L12)
L2 = input - self.denoise_1(input)
L2 = torch.clamp(L2, eps, 1)
s2 = self.enhance(L2.detach())
s21, s22 = pair_downsampler(s2)
H2 = input / s2
H2 = torch.clamp(H2, eps, 1)
H11 = L11 / s21
H11 = torch.clamp(H11, eps, 1)
H12 = L12 / s22
H12 = torch.clamp(H12, eps, 1)
H3_pred = torch.cat([H11, s21], 1).detach() - self.denoise_2(torch.cat([H11, s21], 1))
H3_pred = torch.clamp(H3_pred, eps, 1)
H13 = H3_pred[:, :3, :, :]
s13 = H3_pred[:, 3:, :, :]
H4_pred = torch.cat([H12, s22], 1).detach() - self.denoise_2(torch.cat([H12, s22], 1))
H4_pred = torch.clamp(H4_pred, eps, 1)
H14 = H4_pred[:, :3, :, :]
s14 = H4_pred[:, 3:, :, :]
H5_pred = torch.cat([H2, s2], 1).detach() - self.denoise_2(torch.cat([H2, s2], 1))
H5_pred = torch.clamp(H5_pred, eps, 1)
H3 = H5_pred[:, :3, :, :]
s3 = H5_pred[:, 3:, :, :]
L_pred1_L_pred2_diff = self.TextureDifference(L_pred1, L_pred2)
H3_denoised1, H3_denoised2 = pair_downsampler(H3)
H3_denoised1_H3_denoised2_diff = self.TextureDifference(H3_denoised1, H3_denoised2)
H1 = L2 / s2
H1 = torch.clamp(H1, 0, 1)
H2_blur = blur(H1)
H3_blur = blur(H3)
return L_pred1, L_pred2, L2, s2, s21, s22, H2, H11, H12, H13, s13, H14, s14, H3, s3, H3_pred, H4_pred, L_pred1_L_pred2_diff, H3_denoised1_H3_denoised2_diff, H2_blur, H3_blur
class Finetunemodel(nn.Module):
def __init__(self, weights):
super(Finetunemodel, self).__init__()
self.enhance = Enhancer(layers=3, channels=64)
self.denoise_1 = Denoise_1(chan_embed=48)
self.denoise_2 = Denoise_2(chan_embed=48)
# Try to load weights if file exists
if weights and torch.cuda.is_available():
device = 'cuda:0'
else:
device = 'cpu'
try:
base_weights = torch.load(weights, map_location=device)
pretrained_dict = base_weights
model_dict = self.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
self.load_state_dict(model_dict)
print(f"Successfully loaded weights from {weights}")
except Exception as e:
print(f"Warning: Could not load weights from {weights}: {e}")
print("Using randomly initialized weights")
def weights_init(self, m):
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0, 0.02)
m.bias.data.zero_()
if isinstance(m, nn.BatchNorm2d):
m.weight.data.normal_(1., 0.02)
def forward(self, input):
eps = 1e-4
input = input + eps
L2 = input - self.denoise_1(input)
L2 = torch.clamp(L2, eps, 1)
s2 = self.enhance(L2)
H2 = input / s2
H2 = torch.clamp(H2, eps, 1)
H5_pred = torch.cat([H2, s2], 1).detach() - self.denoise_2(torch.cat([H2, s2], 1))
H5_pred = torch.clamp(H5_pred, eps, 1)
H3 = H5_pred[:, :3, :, :]
return H2, H3 |