import os os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu') import glob, fitz import PIL import re import torch import cv2 import pytesseract import pandas as pd import numpy as np import gradio as gr from PIL import Image from tqdm import tqdm from difflib import SequenceMatcher from itertools import groupby from scipy import ndimage from scipy.ndimage import interpolation as inter from datasets import load_metric from datasets import load_dataset from datasets.features import ClassLabel from transformers import AutoProcessor from PIL import Image, ImageDraw, ImageFont from transformers import AutoModelForTokenClassification from transformers.data.data_collator import default_data_collator from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D from transformers import LayoutLMv3ForTokenClassification,LayoutLMv3FeatureExtractor,LayoutLMv3ImageProcessor import io # import paddleocr # from paddleocr import PaddleOCR auth_token = os.environ.get("HUGGING_FACE_HUB_TOKEN") import warnings # Ignore warning messages warnings.filterwarnings("ignore") id2label= {0: 'others', 1: 'issuer_name', 2: 'issuer_addr', 3: 'issuer_cap', 4: 'issuer_city', 5: 'issuer_prov', 6: 'issuer_state', 7: 'issuer_tel', 8: 'issuer_id', 9: 'issuer_fax', 10: 'issuer_vat', 11: 'issuer_contact', 12: 'issuer_contact_email', 13: 'issuer_contact_phone', 14: 'receiver_name', 15: 'receiver_addr', 16: 'receiver_cap', 17: 'receiver_city', 18: 'receiver_prov', 19: 'receiver_state', 20: 'receiver_tel', 21: 'receiver_fax', 22: 'receiver_vat', 23: 'receiver_id', 24: 'receiver_contact', 25: 'dest_name', 26: 'dest_addr', 27: 'dest_cap', 28: 'dest_city', 29: 'dest_prov', 30: 'dest_state', 31: 'dest_tel', 32: 'dest_fax', 33: 'dest_vat', 34: 'doc_type', 35: 'doc_nr', 36: 'doc_date', 37: 'order_nr', 38: 'order_date', 39: 'service_order', 40: 'shipment_nr', 41: 'client_reference', 42: 'client_vat', 43: 'client_id', 44: 'client_code', 45: 'time', 46: 'notes', 47: 'client_tel', 48: 'art_code', 49: 'ref_code', 50: 'order_reason', 51: 'order_ref', 52: 'order_ref_date', 53: 'detail_desc', 54: 'lot_id', 55: 'lot_qty', 56: 'detail_um', 57: 'detail_qty', 58: 'detail_tare', 59: 'detail_grossw', 60: 'detail_packages', 61: 'detail_netw', 62: 'detail_origin', 63: 'payment_bank', 64: 'payment_terms', 65: 'tot_qty', 66: 'tot_grossw', 67: 'tot_netw', 68: 'tot_volume', 69: 'shipment_reason', 70: 'package_type', 71: 'transport_respons', 72: 'transport_vectors', 73: 'transport_terms', 74: 'transport_datetime', 75: 'return_plt', 76: 'nonreturn_plt', 77: 'dest_signature', 78: 'driver_signature', 79: 'transport_signature', 80: 'page', 81: 'varieta', 82: 'raccolta', 83: 'detail_volume'} custom_config = r'--oem 3 --psm 6' lang='eng' #Google Vision OCR from google.cloud import vision_v1p3beta1 as vision from google.cloud import vision_v1p3beta1 as vision from google.cloud import vision # os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "test-apikey.json" processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False) model = AutoModelForTokenClassification.from_pretrained("sxandie/doc-ai-information-extraction",use_auth_token=auth_token) from tabulate import tabulate def print_df(df): print(tabulate(df, headers = df.columns, tablefmt = 'psql')) def process_image_pytesseract(image,width,height): width, height = image.size feature_extractor = LayoutLMv3ImageProcessor(apply_ocr=True,lang=lang) encoding_feature_extractor = feature_extractor(image, return_tensors="pt",truncation=True) words, boxes = encoding_feature_extractor.words, encoding_feature_extractor.boxes return words,boxes def create_bounding_box5(vertices, width_scale, height_scale): # Get the x, y coordinates x1 = int(vertices[0].x * width_scale) y1 = int(vertices[0].y * height_scale) x2 = int(vertices[2].x * width_scale) y2 = int(vertices[2].y * height_scale) # Validate x1 < x2 if x1 > x2: x1, x2 = x2, x1 # Validate y1 < y2 if y1 > y2: y1, y2 = y2, y1 # Return valid bounding box return [x1, y1, x2, y2] #Google Vision OCR def process_image_GoogleVision(image, width, height): inference_image = [image.convert("RGB")] client = vision.ImageAnnotatorClient() with io.BytesIO() as output: image.save(output, format='JPEG') content = output.getvalue() image = vision.Image(content=content) response = client.text_detection(image=image) texts = response.text_annotations # Get the bounding box vertices and remove the first item bboxes = [text.bounding_poly.vertices[1:] for text in texts] # Create the list of words and boxes words = [text.description for text in texts] boxes = [create_bounding_box5(bbox, 1000/width, 1000/height) for bbox in bboxes] return words,boxes def generate_unique_colors(id2label): # Generate unique colors label_ints = np.random.choice(len(PIL.ImageColor.colormap), len(id2label), replace=False) label_color_pil = list(PIL.ImageColor.colormap.values()) label_color = [label_color_pil[i] for i in label_ints] color = {} for k, v in id2label.items(): if v[:2] == '': color['o'] = label_color[k] else: color[v[0:]] = label_color[k] return color def create_bounding_box1(bbox_data, width_scale: float, height_scale: float): xs = [] ys = [] for x, y in bbox_data: xs.append(x) ys.append(y) left = int(max(0, min(xs) * width_scale)) top = int(max(0, min(ys) * height_scale)) right = int(min(1000, max(xs) * width_scale)) bottom = int(min(1000, max(ys) * height_scale)) return [left, top, right, bottom] def unnormalize_box(bbox, width, height): return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ] def iob_to_label(label): return id2label.get(label, 'others') def process_image(image): custom_config = r'--oem 3 --psm 6' # lang='eng+deu+ita+chi_sim' lang='eng' width, height = image.size feature_extractor = LayoutLMv3FeatureExtractor(apply_ocr=True) encoding_feature_extractor = feature_extractor(image, return_tensors="pt",truncation=True) words, boxes = encoding_feature_extractor.words, encoding_feature_extractor.boxes custom_config = r'--oem 3 --psm 6' # encode inference_image = [image.convert("RGB")] encoding = processor(inference_image , truncation=True, return_offsets_mapping=True, return_tensors="pt", padding="max_length", stride =128, max_length=512, return_overflowing_tokens=True) offset_mapping = encoding.pop('offset_mapping') overflow_to_sample_mapping = encoding.pop('overflow_to_sample_mapping') # change the shape of pixel values x = [] for i in range(0, len(encoding['pixel_values'])): x.append(encoding['pixel_values'][i]) x = torch.stack(x) encoding['pixel_values'] = x # forward pass outputs = model(**encoding) # get predictions predictions = outputs.logits.argmax(-1).squeeze().tolist() token_boxes = encoding.bbox.squeeze().tolist() # only keep non-subword predictions preds = [] l_words = [] bboxes = [] token_section_num = [] if (len(token_boxes) == 512): predictions = [predictions] token_boxes = [token_boxes] for i in range(0, len(token_boxes)): for j in range(0, len(token_boxes[i])): unnormal_box = unnormalize_box(token_boxes[i][j], width, height) if (np.asarray(token_boxes[i][j]).shape != (4,)): continue elif (token_boxes[i][j] == [0, 0, 0, 0] or token_boxes[i][j] == 0): #print('zero found!') continue # if bbox is available in the list, just we need to update text elif (unnormal_box not in bboxes): preds.append(predictions[i][j]) l_words.append(processor.tokenizer.decode(encoding["input_ids"][i][j])) bboxes.append(unnormal_box) token_section_num.append(i) else: # we have to update the word _index = bboxes.index(unnormal_box) if (token_section_num[_index] == i): # check if they're in a same section or not (documents with more than 512 tokens will divide to seperate # parts, so it's possible to have a word in both of the pages and we have to control that repetetive words # HERE: because they're in a same section, so we can merge them safely l_words[_index] = l_words[_index] + processor.tokenizer.decode(encoding["input_ids"][i][j]) else: continue return bboxes, preds, l_words, image def process_image_encoding(model, processor, image, words, boxes,width,height): # encode inference_image = [image.convert("RGB")] encoding = processor(inference_image ,words,boxes=boxes, truncation=True, return_offsets_mapping=True, return_tensors="pt", padding="max_length", stride =128, max_length=512, return_overflowing_tokens=True) offset_mapping = encoding.pop('offset_mapping') overflow_to_sample_mapping = encoding.pop('overflow_to_sample_mapping') # change the shape of pixel values x = [] for i in range(0, len(encoding['pixel_values'])): x.append(encoding['pixel_values'][i]) x = torch.stack(x) encoding['pixel_values'] = x # forward pass outputs = model(**encoding) # get predictions predictions = outputs.logits.argmax(-1).squeeze().tolist() token_boxes = encoding.bbox.squeeze().tolist() # only keep non-subword predictions preds = [] l_words = [] bboxes = [] token_section_num = [] if (len(token_boxes) == 512): predictions = [predictions] token_boxes = [token_boxes] for i in range(0, len(token_boxes)): for j in range(0, len(token_boxes[i])): unnormal_box = unnormalize_box(token_boxes[i][j], width, height) if (np.asarray(token_boxes[i][j]).shape != (4,)): continue elif (token_boxes[i][j] == [0, 0, 0, 0] or token_boxes[i][j] == 0): #print('zero found!') continue # if bbox is available in the list, just we need to update text elif (unnormal_box not in bboxes): preds.append(predictions[i][j]) l_words.append(processor.tokenizer.decode(encoding["input_ids"][i][j])) bboxes.append(unnormal_box) token_section_num.append(i) else: # we have to update the word _index = bboxes.index(unnormal_box) if (token_section_num[_index] == i): # check if they're in a same section or not (documents with more than 512 tokens will divide to seperate # parts, so it's possible to have a word in both of the pages and we have to control that repetetive words # HERE: because they're in a same section, so we can merge them safely l_words[_index] = l_words[_index] + processor.tokenizer.decode(encoding["input_ids"][i][j]) else: continue return bboxes, preds, l_words, image def process_form_(json_df): labels = [x['LABEL'] for x in json_df] texts = [x['TEXT'] for x in json_df] cmb_list = [] for i, j in enumerate(labels): cmb_list.append([labels[i], texts[i]]) grouper = lambda l: [[k] + sum((v[1::] for v in vs), []) for k, vs in groupby(l, lambda x: x[0])] list_final = grouper(cmb_list) lst_final = [] for x in list_final: json_dict = {} json_dict[x[0]] = (' ').join(x[1:]) lst_final.append(json_dict) return lst_final def createExcel(maindf, detailsdf, pdffile): outputPath = f'{pdffile}.xlsx' with pd.ExcelWriter(outputPath, engine='xlsxwriter') as writer: maindf.to_excel(writer, sheet_name='headers', index=False) detailsdf.to_excel(writer, sheet_name='details', index=False) worksheet1 = writer.sheets["headers"] for idx, col in enumerate(maindf): series = maindf[col] max_len = max(( series.astype(str).map(len).max(), len(str(series.name)) )) + 1 worksheet1.set_column(idx, idx, max_len) worksheet2 = writer.sheets["details"] for idx, col in enumerate(detailsdf): series = detailsdf[col] max_len = max(( series.astype(str).map(len).max(), len(str(series.name)) )) + 1 worksheet2.set_column(idx, idx, max_len) return outputPath def visualize_image(final_bbox, final_preds, l_words, image,label2color): draw = ImageDraw.Draw(image) font = ImageFont.load_default() json_df = [] for ix, (prediction, box) in enumerate(zip(final_preds, final_bbox)): if prediction is not None: predicted_label = iob_to_label(prediction).lower() if predicted_label not in ["others"]: draw.rectangle(box, outline=label2color[predicted_label]) draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) json_dict = {} json_dict['TEXT'] = l_words[ix] json_dict['LABEL'] = label2color[predicted_label] json_df.append(json_dict) return image, json_df def rotate_image(image): extracted_text = pytesseract.image_to_string(image) # check if the image contains any text if not extracted_text: print("The image does not contain any text.") return None elif extracted_text.isspace(): print("The image contains only spaces.") return None text = pytesseract.image_to_osd(image) angle = int(re.search('(?<=Rotate: )\d+', text).group(0)) angle = 360 - angle rotated = ndimage.rotate(image, angle) data = Image.fromarray(rotated) return data # correct the skewness of images def correct_skew(image, delta=1, limit=5): def determine_score(arr, angle): data = inter.rotate(arr, angle, reshape=False, order=0) histogram = np.sum(data, axis=1, dtype=float) score = np.sum((histogram[1:] - histogram[:-1]) ** 2, dtype=float) return histogram, score # Convert the PIL Image object to a numpy array image = np.asarray(image.convert('L'), dtype=np.uint8) # Apply thresholding thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] scores = [] angles = np.arange(-limit, limit + delta, delta) for angle in angles: histogram, score = determine_score(thresh, angle) scores.append(score) best_angle = angles[scores.index(max(scores))] (h, w) = image.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, best_angle, 1.0) corrected = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, \ borderMode=cv2.BORDER_REPLICATE) return best_angle, corrected def removeBorders(img): result = img.copy() if len(result.shape) == 2: # if the input image is grayscale, convert it to BGR format result = cv2.cvtColor(result, cv2.COLOR_GRAY2BGR) gray = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY) # convert to grayscale thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] # Remove horizontal lines horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (40,1)) remove_horizontal = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=2) cnts = cv2.findContours(remove_horizontal, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[0] if len(cnts) == 2 else cnts[1] for c in cnts: cv2.drawContours(result, [c], -1, (255,255,255), 5) # Remove vertical lines vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,40)) remove_vertical = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, vertical_kernel, iterations=2) cnts = cv2.findContours(remove_vertical, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[0] if len(cnts) == 2 else cnts[1] for c in cnts: cv2.drawContours(result, [c], -1, (255,255,255), 5) return result def color2label_except(label2color, excluded_labels): """ Inversely maps colors to labels based on the provided label2color dictionary, excluding the specified labels. Args: label2color (dict): Dictionary mapping labels to colors. excluded_labels (list): List of labels to exclude. Returns: dict: Dictionary mapping colors to labels, excluding the specified labels. """ # Filter out excluded labels from label2color dictionary filtered_label2color = {label: color for label, color in label2color.items() if label not in excluded_labels} # Invert the filtered label2color dictionary to create color2label mapping return {v: k for k, v in filtered_label2color.items()} def add_dataframe(df_main,labels_repeating,label2color): col_name_map =color2label_except(label2color,labels_repeating) columns = list(col_name_map.values()) data = {col:[] for col in columns} for i in df_main: for k, v in i.items(): if k in col_name_map: data[col_name_map[k]].append(v) # join the list of strings for each column and convert to a dataframe for col in columns: data[col] = [' '.join(data[col])] df_upper = pd.DataFrame(data) key_value_pairs = [] for col in df_upper.columns: key_value_pairs.append({'key': col, 'value': df_upper[col][0]}) df_key_value = pd.DataFrame(key_value_pairs) # Extract the value from the containertype column # container_quantity = int(df_key_value[df_key_value['key'] == 'containertype']['value'].str.split("x").str[0]) # # Add a new row to the DataFrame # df_key_value = df_key_value.append({'key': 'containerquantity', 'value': container_quantity}, ignore_index=True) # # Extract the desired value from the containertype column # df_key_value.loc[df_key_value['key'] == 'containertype', 'value'] = df_key_value.loc[df_key_value['key'] == 'containertype', 'value'].str.split("x").str[1] return df_key_value import statistics def id2label_row(s, id2label): if s in id2label.values(): return s return id2label[s] def dist_height(y1,y2): return abs(int(y1)- int(y2)) def mergeBoxes(df): xmin, ymin, xmax, ymax = [], [], [], [] for i in range(df.shape[0]): box = df['bbox_column'].iloc[i] xmin.append(box[0]) ymin.append(box[1]) xmax.append(box[2]) ymax.append(box[3]) return [min(xmin), min(ymin), max(xmax), max(ymax)] def transform_dataset(df, merge_labels): df_temp = df.iloc[merge_labels] # a duplicate df with only concerned rows df_temp.reset_index(drop = True, inplace = True) text = ' '.join(df_temp['scr_column']) bbox = mergeBoxes(df_temp) retain_index = merge_labels[0] #the first index is parent row df['scr_column'].iloc[retain_index] = text df['bbox_column'].iloc[retain_index] = bbox # keeping the first & removing rest df = df.loc[~df.index.isin(merge_labels[1:]), :] df.reset_index(drop = True, inplace = True) return df def box_overlap(box1, box2, horizontal_vertical): # Extract coordinates of box1 x1_box1, y1_box1, x2_box1, y2_box1 = box1 # Extract coordinates of box2 x1_box2, y1_box2, x2_box2, y2_box2 = box2 # Check if boxes overlap horizontally and vertically if horizontal_vertical == "H": if x1_box1 <= x2_box2 and x2_box1 >= x1_box2: return True else: return False if horizontal_vertical == "V": if y1_box1 <= y2_box2 and y2_box1 >= y1_box2: return True else: return False def horizonatal_merging(df, font_length, perform_overlapping =False, x_change = 0, y_change = 0): fat_df = df.copy() for i in range(df.shape[0]): box = fat_df['bbox_column'].iloc[i] fat_df['bbox_column'].iloc[i] = [box[0]-x_change, box[1]-y_change, box[2]+x_change, box[3] + y_change] if perform_overlapping == True: redundant_rows = [] for i in range(fat_df.shape[0]): box_i = fat_df.bbox_column[i] indices2merge = [] for j in range(i+1, fat_df.shape[0]): if fat_df.preds_column[j] == fat_df.preds_column[i]: # if labels are same box_j = fat_df.bbox_column[j] if abs(box_i[1]-box_j[3])<font_length*1.5: # if the boxes are at height within 50% more range of font size # Check if boxes overlap horizontally if box_overlap(box_i, box_j, 'H'): indices2merge.append(j) df.scr_column[i] += df.scr_column[j] box_i = fat_df.bbox_column[j] # finding the next connected word #once we have all indices that belong to a particular category # merging the boundong boxes, keeping them in 1st note/row. if len(indices2merge)!=0: df['bbox_column'].iloc[i] = mergeBoxes(df.loc[indices2merge]) redundant_rows.extend(indices2merge) #now since all the transformation is done, lets remove the redundant rows return df.drop(redundant_rows) def mergeLabelsExtensive_repeating(df_grouped, repeating_label): df_grouped.reset_index(inplace = True, drop = True) # this function merges same label entities together in a single instance. df_grouped = df_grouped[df_grouped['preds_column'].isin(repeating_label)] font_length =0 count = 0 while count<5 and count<df_grouped.shape[0]: box_i = df_grouped['bbox_column'].iloc[count] # box of current label contains [x1,y1,x3,y3] font_length += box_i[3]-box_i[1] count +=1 font_length = font_length/5 df_grouped = horizonatal_merging(df_grouped, font_length, True, 30, 0) return df_grouped def group_labels_wrt_height(df): """ This function groups the labels based on the height of the bounding box. """ #sorting the lines based on heights using column 'y_axis' df = df.sort_values(by='y_axis') df.reset_index(inplace = True, drop = True) print("entering: group_labels_wrt_height ") final_yaxis = [] final_scr = [] final_pred = [] current_group = [] current_scr = [] current_pred = [] # Iterate through the column values for i, (value,scr,preds ) in enumerate(zip(df['y_axis'], df['scr_column'], df['preds_column'])): if i == 0: # Start a new group with the first value current_group.append(value) current_scr.append(scr) current_pred.append(preds) else: # Check if the difference between the current value and the previous value is <= 20 if abs(value - df['y_axis'][i - 1]) <= 35: # Add the value to the current group current_group.append(value) current_scr.append(scr) current_pred.append(preds) else: # Start a new group with the current value final_yaxis.append(current_group) final_scr.append(current_scr) final_pred.append(current_pred) current_group = [value] current_scr = [scr] current_pred = [preds] # Add the last group final_yaxis.append(current_group) final_scr.append(current_scr) final_pred.append(current_pred) final_grouped_df = pd.DataFrame({'y_axis': final_yaxis, 'scr_column': final_scr, 'preds_column': final_pred}) print("Grouped df after sorting based on height") print_df(final_grouped_df) return final_grouped_df # searches the set of labels in the whole range def search_labelSet_height_range(df, d, keyList): print("search_labelSet_height_range") keyDict = dict.fromkeys(keyList, []) #stores the required information as dictonary, then coverted to df print("Dataframe from extraction is going to happen: ") for i in range(df.shape[0]): # search df for right-bottom y axis value and check if it lies within the range d. box = df['bbox_column'].iloc[i] if dist_height(box[1], d)<50: key = df['preds_column'].iloc[i] keyDict[key] = df['scr_column'].iloc[i] return keyDict def clean_colText(df, column): for i in range(df.shape[0]): df[column].iloc[i] = df[column].iloc[i].replace('[', '').replace('|', '').replace('+', '') return df def find_repeatingLabels(df, labels_repeating): print("In find_repeatingLabels: ") row2drop = [] # dropping the rows that have been covered in previous dataframe for i in range(df.shape[0]): df['preds_column'].iloc[i] = id2label_row(df['preds_column'].iloc[i], id2label) if df['preds_column'].iloc[i] not in labels_repeating: row2drop.append(i) df.drop(index = row2drop, inplace = True) df = clean_colText(df, 'scr_column') print("removing non-tabular labels.") df = mergeLabelsExtensive_repeating(df,labels_repeating) print('after merging non-tabular labels: ') labels_repeating = list(set(list(df["preds_column"]))) print("labels_repeating in this document are: ",labels_repeating) # adding extra column that contains the Y-axis information (Height) df['y_axis'] = np.NaN for i in range(df.shape[0]): box = df['bbox_column'].iloc[i] df['y_axis'].iloc[i] = box[1] print("After adding y-axis data in the dataframes: ") df = mergeLabelsExtensive(df) print("aftermerging the df extensively") print("Grouping the labels wrt heights: ") grouped_df = group_labels_wrt_height(df) #once labels are grouped, now we will create dictionaries for labels and values occuring in single line row_dicts = [] # will contains each row of df as single dictionary. for _, row in grouped_df.iterrows(): row_dict = {} for preds, scr in zip(row['preds_column'], row['scr_column']): row_dict[preds] = scr row_dicts.append(row_dict) #creating new final_df = pd.DataFrame(columns=labels_repeating) for d in row_dicts: final_df = final_df.append(d, ignore_index=True) final_df = final_df.fillna('') return final_df def mergeImageVertical(images): # pick the image which is the smallest, and resize the others to match it (can be arbitrary image shape here) min_shape = sorted( [(np.sum(i.size), i.size ) for i in images])[0][1] imgs_comb = np.hstack([i.resize(min_shape) for i in images]) # for a vertical stacking it is simple: use vstack imgs_comb = np.vstack([i.resize(min_shape) for i in images]) imgs_comb = Image.fromarray(imgs_comb) return imgs_comb def perform_erosion(img): # Check if the image is already in grayscale if len(img.shape) == 2: gray = img else: # Convert the image to grayscale gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Define the kernel for erosion and dilation kernel = np.ones((3, 3), np.uint8) # Perform erosion followed by dilation erosion = cv2.erode(gray, kernel, iterations=1) dilation = cv2.dilate(erosion, kernel, iterations=1) # Double the size of the image double_size = cv2.resize(gray, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR) # Perform erosion on the doubled image double_erosion = cv2.erode(double_size, kernel, iterations=1) return double_erosion def remove_leading_trailing_special_characters(input_string): cleaned_string = re.sub(r'^[^A-Za-z0-9]+|[^A-Za-z0-9]+$', '', str(input_string)) return cleaned_string def clean_dataframe(df): # Apply the remove_leading_trailing_special_characters function to all string columns for column in df.select_dtypes(include='object').columns: df[column] = df[column].apply(remove_leading_trailing_special_characters) # Remove rows with all NaN or blank values df = df.fillna('') # Replace NaN values with blank return df def mergeLabelsExtensive(df_grouped): i = 0 while i < df_grouped.shape[0]: merge_labels = [i] # collects indices whose data has been merged, so we need to delete it now. label = df_grouped['preds_column'].iloc[i] box1 = df_grouped['bbox_column'].iloc[i] for j in range(i+1, df_grouped.shape[0]): box2 = df_grouped['bbox_column'].iloc[j] if label == df_grouped['preds_column'].iloc[j] and dist_height(box1[3], box2[3])<20: # which are in the vicinity of 20 pixels. merge_labels.append(j) print_df(df_grouped) df_grouped = transform_dataset(df_grouped, merge_labels) i = i+1 return df_grouped def multilabelsHandle(df, thermo_details): # Since 0 is assigned to 'others' and these values are not so important. We delete these values. df = df[df.preds_column != 0] df.reset_index(drop=True, inplace=True) for i in range(df.shape[0]): df['preds_column'].iloc[i] = id2label.get(df['preds_column'].iloc[i]) df['preds_column'].unique() df_grouped = df.copy() #stores the index of relevant labels. df_grouped.shape[0] for i in range(df.shape[0]): if df['preds_column'].iloc[i] not in thermo_details: df_grouped.drop(i, inplace = True) df_grouped.reset_index(drop=True, inplace=True) keyList = df_grouped['preds_column'].unique() df_grouped = mergeLabelsExtensive(df_grouped) # extract the height of boxes df_grouped = extract_yaxis(df_grouped) shipment_labels = ['delivery_name','delivery_address','contact_phone'] # shipment heights_shipment = get_heights(df_grouped, shipment_labels) # now segregating the other repeating values in df like measiure, weight, volume etc. # they will be containeed within the heights, as they act as boudaries. df_labelSet = pd.DataFrame(columns= thermo_details) for i in range(len(heights_shipment)): if i == len(heights_shipment)-1: new_df = search_labelSet_between_h1_h2(df_grouped, heights_shipment[i], 5000, keyList) else: new_df = search_labelSet_between_h1_h2(df_grouped, heights_shipment[i], heights_shipment[i+1], keyList) df_labelSet = df_labelSet.append(new_df, ignore_index=True) return df_labelSet def completepreprocess(pdffile,ocr_type): myDataFrame = pd.DataFrame() myDataFrame2 = pd.DataFrame() merge_pages=[] doc = fitz.open(pdffile) for i in range(0, len(doc)): page = doc.load_page(i) zoom = 2 mat = fitz.Matrix(zoom, zoom) pix = page.get_pixmap(matrix = mat, dpi = 300) image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) ro_image = rotate_image(image) if ro_image is None: return None angle, skewed_image = correct_skew(ro_image) if skewed_image is None: return None remove_border = removeBorders(skewed_image) image = Image.fromarray(remove_border) width,height=image.size label2color = generate_unique_colors(id2label) width,height=image.size if ocr_type == "GoogleVisionOCR": words, boxes = process_image_GoogleVision(image, width, height) else: words, boxes = process_image_pytesseract(image, width, height) bbox, preds, words, image = process_image_encoding(model, processor, image, words, boxes,width,height) im, df_visualize = visualize_image(bbox, preds, words, image,label2color) df_main = process_form_(df_visualize) bbox_column = bbox preds_column = preds scr_column = words # dictionary of lists dict = {'bbox_column': bbox_column, 'preds_column': preds_column, 'scr_column': scr_column} df_single_page = pd.DataFrame(dict) labels_repeating = ['art_code', 'ref_code', 'detail_desc','lot_id','detail_qty','detail_um','detail_tare','detail_grossw','detail_netw','detail_origin','varieta','raccolta'] df_repeating_page = find_repeatingLabels(df_single_page, labels_repeating) myDataFrame2= myDataFrame2.append(df_repeating_page,sort=False) df1=add_dataframe(df_main,labels_repeating,label2color).astype(str) myDataFrame= myDataFrame.append(df1,sort=False).reset_index(drop = True) myDataFrame['value'].apply(len) row2drop = [] for i in range(myDataFrame.shape[0]): if len( myDataFrame['value'].iloc[i]) ==0: row2drop.append(i) myDataFrame.drop(index = row2drop, inplace = True) myDataFrame.reset_index(drop = True, inplace = True) myDataFrame = myDataFrame[myDataFrame["value"].notnull()] myDataFrame.drop_duplicates(subset=["key"],inplace=True) myDataFrame2 = myDataFrame2.loc[:, ~(myDataFrame2.apply(lambda x: all(isinstance(val, list) and len(val) == 0 for val in x)))] merge_pages.append(im) im2=mergeImageVertical(merge_pages) myDataFrame2 = clean_dataframe(myDataFrame2) myDataFrame = clean_dataframe(myDataFrame) myDataFrame = myDataFrame[myDataFrame['key'] != 'others'] output_excel_path = createExcel(myDataFrame, myDataFrame2, pdffile.name) return im2,myDataFrame,myDataFrame2,output_excel_path title = "Interactive demo: Document Information Extraction model PDF/Images" description = "Upload your own document, or use the one given below at the left corner. Results will show up in a few seconds. The annotated image can be opened in a new window for a better view." css = """.output_image, .input_image {height: 600px !important}""" examples = [["sample_doc.pdf"]] iface = gr.Interface( fn=completepreprocess, inputs=[ gr.components.File(label="PDF"), gr.components.Dropdown(label="Select the OCR", choices=["Pytesseract","GoogleVisionOCR"]), ], outputs=[ gr.components.Image(type="pil", label="annotated image"), "dataframe", "dataframe" #gr.File(label="Excel output") ], title=title, description=description, examples=examples, css=css ) iface.launch(inline=True, debug=True)