swarecito commited on
Commit
350cda1
·
1 Parent(s): 7a7425c

Refactor app.py and update requirements.txt

Browse files
Files changed (4) hide show
  1. .ipynb_checkpoints/app-checkpoint.ipynb +0 -0
  2. app.ipynb +0 -0
  3. app.py +38 -132
  4. requirements.txt +0 -1
.ipynb_checkpoints/app-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
app.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
app.py CHANGED
@@ -1,147 +1,53 @@
1
- import io
2
- import random
3
- from typing import List, Tuple
4
 
5
- import aiohttp
6
- import panel as pn
7
- from PIL import Image
8
- from transformers import CLIPModel, CLIPProcessor
9
-
10
- pn.extension(design="bootstrap", sizing_mode="stretch_width")
11
-
12
- ICON_URLS = {
13
- "brand-github": "https://github.com/holoviz/panel",
14
- "brand-twitter": "https://twitter.com/Panel_Org",
15
- "brand-linkedin": "https://www.linkedin.com/company/panel-org",
16
- "message-circle": "https://discourse.holoviz.org/",
17
- "brand-discord": "https://discord.gg/AXRHnJU6sP",
18
- }
19
 
 
 
 
 
 
20
 
21
- async def random_url(_):
22
- pet = random.choice(["cat", "dog"])
23
- api_url = f"https://api.the{pet}api.com/v1/images/search"
24
- async with aiohttp.ClientSession() as session:
25
- async with session.get(api_url) as resp:
26
- return (await resp.json())[0]["url"]
27
 
28
 
29
- @pn.cache
30
- def load_processor_model(
31
- processor_name: str, model_name: str
32
- ) -> Tuple[CLIPProcessor, CLIPModel]:
33
- processor = CLIPProcessor.from_pretrained(processor_name)
34
- model = CLIPModel.from_pretrained(model_name)
35
- return processor, model
36
 
 
 
37
 
38
- async def open_image_url(image_url: str) -> Image:
39
- async with aiohttp.ClientSession() as session:
40
- async with session.get(image_url) as resp:
41
- return Image.open(io.BytesIO(await resp.read()))
42
 
 
 
 
 
 
 
 
 
43
 
44
- def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
45
- processor, model = load_processor_model(
46
- "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
47
- )
48
- inputs = processor(
49
- text=class_items,
50
- images=[image],
51
- return_tensors="pt", # pytorch tensors
52
  )
53
- outputs = model(**inputs)
54
- logits_per_image = outputs.logits_per_image
55
- class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
56
- return class_likelihoods[0]
57
-
58
-
59
- async def process_inputs(class_names: List[str], image_url: str):
60
- """
61
- High level function that takes in the user inputs and returns the
62
- classification results as panel objects.
63
- """
64
- try:
65
- main.disabled = True
66
- if not image_url:
67
- yield "##### ⚠️ Provide an image URL"
68
- return
69
-
70
- yield "##### ⚙ Fetching image and running model..."
71
- try:
72
- pil_img = await open_image_url(image_url)
73
- img = pn.pane.Image(pil_img, height=400, align="center")
74
- except Exception as e:
75
- yield f"##### 😔 Something went wrong, please try a different URL!"
76
- return
77
-
78
- class_items = class_names.split(",")
79
- class_likelihoods = get_similarity_scores(class_items, pil_img)
80
-
81
- # build the results column
82
- results = pn.Column("##### 🎉 Here are the results!", img)
83
-
84
- for class_item, class_likelihood in zip(class_items, class_likelihoods):
85
- row_label = pn.widgets.StaticText(
86
- name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
87
- )
88
- row_bar = pn.indicators.Progress(
89
- value=int(class_likelihood * 100),
90
- sizing_mode="stretch_width",
91
- bar_color="secondary",
92
- margin=(0, 10),
93
- design=pn.theme.Material,
94
- )
95
- results.append(pn.Column(row_label, row_bar))
96
- yield results
97
- finally:
98
- main.disabled = False
99
-
100
-
101
- # create widgets
102
- randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
103
-
104
- image_url = pn.widgets.TextInput(
105
- name="Image URL to classify",
106
- value=pn.bind(random_url, randomize_url),
107
- )
108
- class_names = pn.widgets.TextInput(
109
- name="Comma separated class names",
110
- placeholder="Enter possible class names, e.g. cat, dog",
111
- value="cat, dog, parrot",
112
- )
113
 
114
- input_widgets = pn.Column(
115
- "##### 😊 Click randomize or paste a URL to start classifying!",
116
- pn.Row(image_url, randomize_url),
117
- class_names,
118
- )
119
 
120
- # add interactivity
121
- interactive_result = pn.panel(
122
- pn.bind(process_inputs, image_url=image_url, class_names=class_names),
123
- height=600,
124
- )
125
 
126
- # add footer
127
- footer_row = pn.Row(pn.Spacer(), align="center")
128
- for icon, url in ICON_URLS.items():
129
- href_button = pn.widgets.Button(icon=icon, width=35, height=35)
130
- href_button.js_on_click(code=f"window.open('{url}')")
131
- footer_row.append(href_button)
132
- footer_row.append(pn.Spacer())
133
 
134
- # create dashboard
135
- main = pn.WidgetBox(
136
- input_widgets,
137
- interactive_result,
138
- footer_row,
139
- )
140
 
141
- title = "Panel Demo - Image Classification"
142
- pn.template.BootstrapTemplate(
143
- title=title,
144
- main=main,
145
- main_max_width="min(50%, 698px)",
146
- header_background="#F08080",
147
- ).servable(title=title)
 
1
+ # AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
 
 
2
 
3
+ # %% auto 0
4
+ __all__ = ['csv_file', 'data', 'variable_widget', 'window_widget', 'sigma_widget', 'bound_plot', 'first_app', 'transform_data',
5
+ 'create_plot']
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ # %% app.ipynb 1
8
+ import panel as pn
9
+ import hvplot.pandas
10
+ import pandas as pd
11
+ import numpy as np
12
 
 
 
 
 
 
 
13
 
14
 
15
+ # %% app.ipynb 2
16
+ pn.extension(design='material')
 
 
 
 
 
17
 
18
+ csv_file = ("https://raw.githubusercontent.com/holoviz/panel/main/examples/assets/occupancy.csv")
19
+ data = pd.read_csv(csv_file, parse_dates=["date"], index_col="date")
20
 
21
+ data.tail()
 
 
 
22
 
23
+ # %% app.ipynb 3
24
+ def transform_data(variable, window, sigma):
25
+ ''' Calculates the rolling average and the outliers '''
26
+ avg = data[variable].rolling(window=window).mean()
27
+ residual = data[variable] - avg
28
+ std = residual.rolling(window=window).std()
29
+ outliers = np.abs(residual) > std * sigma
30
+ return avg, avg[outliers]
31
 
32
+ def create_plot(variable="Temperature", window=30, sigma=10):
33
+ ''' Plots the rolling average and the outliers '''
34
+ avg, highlight = transform_data(variable, window, sigma)
35
+ return avg.hvplot(height=300, width=400, legend=False) * highlight.hvplot.scatter(
36
+ color="orange", padding=0.1, legend=False
 
 
 
37
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
+ # %% app.ipynb 4
40
+ create_plot(variable='Temperature', window=20, sigma=10)
 
 
 
41
 
42
+ # %% app.ipynb 5
43
+ variable_widget = pn.widgets.Select(name="variable", value="Temperature", options=list(data.columns))
44
+ window_widget = pn.widgets.IntSlider(name="window", value=30, start=1, end=60)
45
+ sigma_widget = pn.widgets.IntSlider(name="sigma", value=10, start=0, end=20)
 
46
 
47
+ # %% app.ipynb 6
48
+ bound_plot = pn.bind(create_plot, variable=variable_widget, window=window_widget, sigma=sigma_widget)
 
 
 
 
 
49
 
50
+ # %% app.ipynb 7
51
+ first_app = pn.Column(variable_widget, window_widget, sigma_widget, bound_plot)
 
 
 
 
52
 
53
+ first_app.servable()
 
 
 
 
 
 
requirements.txt CHANGED
@@ -2,5 +2,4 @@ panel
2
  jupyter
3
  transformers
4
  numpy
5
- torch
6
  aiohttp
 
2
  jupyter
3
  transformers
4
  numpy
 
5
  aiohttp