Spaces:
Runtime error
Runtime error
Vincentqyw
commited on
Commit
·
8e76240
1
Parent(s):
6cb641c
update: default params
Browse files- app.py +72 -54
- common/utils.py +35 -26
- common/viz.py +1 -345
- style.css +1 -0
app.py
CHANGED
|
@@ -2,10 +2,18 @@ import argparse
|
|
| 2 |
import gradio as gr
|
| 3 |
from common.utils import (
|
| 4 |
matcher_zoo,
|
|
|
|
| 5 |
change_estimate_geom,
|
| 6 |
run_matching,
|
| 7 |
-
ransac_zoo,
|
| 8 |
gen_examples,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
)
|
| 10 |
|
| 11 |
DESCRIPTION = """
|
|
@@ -21,58 +29,66 @@ This Space demonstrates [Image Matching WebUI](https://github.com/Vincentqyw/ima
|
|
| 21 |
|
| 22 |
|
| 23 |
def ui_change_imagebox(choice):
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
|
| 27 |
-
def ui_reset_state(
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
#
|
| 35 |
-
ransac_method="RANSAC",
|
| 36 |
-
ransac_reproj_threshold=8,
|
| 37 |
-
ransac_confidence=0.999,
|
| 38 |
-
ransac_max_iter=10000,
|
| 39 |
-
choice_estimate_geom="Homography",
|
| 40 |
-
):
|
| 41 |
-
match_threshold = 0.2
|
| 42 |
-
extract_max_keypoints = 1000
|
| 43 |
-
keypoint_threshold = 0.015
|
| 44 |
-
key = list(matcher_zoo.keys())[0]
|
| 45 |
-
image0 = None
|
| 46 |
-
image1 = None
|
| 47 |
-
# enable_ransac = False
|
| 48 |
return (
|
| 49 |
-
image0
|
| 50 |
-
image1
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
keypoint_threshold
|
| 54 |
-
key,
|
| 55 |
-
ui_change_imagebox("upload"),
|
| 56 |
-
ui_change_imagebox("upload"),
|
| 57 |
-
"upload",
|
| 58 |
None, # keypoints
|
| 59 |
None, # raw matches
|
| 60 |
None, # ransac matches
|
| 61 |
-
{},
|
| 62 |
-
{},
|
| 63 |
-
None,
|
| 64 |
-
{},
|
| 65 |
-
#
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
"Homography",
|
| 71 |
)
|
| 72 |
|
| 73 |
|
| 74 |
# "footer {visibility: hidden}"
|
| 75 |
def run(config):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
with gr.Blocks(css="style.css") as app:
|
| 77 |
gr.Markdown(DESCRIPTION)
|
| 78 |
|
|
@@ -94,21 +110,21 @@ def run(config):
|
|
| 94 |
input_image0 = gr.Image(
|
| 95 |
label="Image 0",
|
| 96 |
type="numpy",
|
| 97 |
-
interactive=True,
|
| 98 |
image_mode="RGB",
|
|
|
|
|
|
|
| 99 |
)
|
| 100 |
input_image1 = gr.Image(
|
| 101 |
label="Image 1",
|
| 102 |
type="numpy",
|
| 103 |
-
interactive=True,
|
| 104 |
image_mode="RGB",
|
|
|
|
|
|
|
| 105 |
)
|
| 106 |
|
| 107 |
with gr.Row():
|
| 108 |
button_reset = gr.Button(value="Reset")
|
| 109 |
-
button_run = gr.Button(
|
| 110 |
-
value="Run Match", variant="primary"
|
| 111 |
-
)
|
| 112 |
|
| 113 |
with gr.Accordion("Advanced Setting", open=False):
|
| 114 |
with gr.Accordion("Matching Setting", open=True):
|
|
@@ -153,7 +169,7 @@ def run(config):
|
|
| 153 |
# enable_ransac = gr.Checkbox(label="Enable RANSAC")
|
| 154 |
ransac_method = gr.Dropdown(
|
| 155 |
choices=ransac_zoo.keys(),
|
| 156 |
-
value=
|
| 157 |
label="RANSAC Method",
|
| 158 |
interactive=True,
|
| 159 |
)
|
|
@@ -185,7 +201,7 @@ def run(config):
|
|
| 185 |
choice_estimate_geom = gr.Radio(
|
| 186 |
["Fundamental", "Homography"],
|
| 187 |
label="Reconstruct Geometry",
|
| 188 |
-
value=
|
| 189 |
)
|
| 190 |
|
| 191 |
# with gr.Column():
|
|
@@ -197,7 +213,6 @@ def run(config):
|
|
| 197 |
match_setting_max_features,
|
| 198 |
detect_keypoints_threshold,
|
| 199 |
matcher_list,
|
| 200 |
-
# enable_ransac,
|
| 201 |
ransac_method,
|
| 202 |
ransac_reproj_threshold,
|
| 203 |
ransac_confidence,
|
|
@@ -243,9 +258,13 @@ def run(config):
|
|
| 243 |
output_wrapped = gr.Image(
|
| 244 |
label="Wrapped Pair", type="numpy"
|
| 245 |
)
|
| 246 |
-
with gr.Accordion(
|
| 247 |
-
|
| 248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
# callbacks
|
| 250 |
match_image_src.change(
|
| 251 |
fn=ui_change_imagebox,
|
|
@@ -289,7 +308,6 @@ def run(config):
|
|
| 289 |
matcher_info,
|
| 290 |
output_wrapped,
|
| 291 |
geometry_result,
|
| 292 |
-
# enable_ransac,
|
| 293 |
ransac_method,
|
| 294 |
ransac_reproj_threshold,
|
| 295 |
ransac_confidence,
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from common.utils import (
|
| 4 |
matcher_zoo,
|
| 5 |
+
ransac_zoo,
|
| 6 |
change_estimate_geom,
|
| 7 |
run_matching,
|
|
|
|
| 8 |
gen_examples,
|
| 9 |
+
DEFAULT_RANSAC_METHOD,
|
| 10 |
+
DEFAULT_SETTING_GEOMETRY,
|
| 11 |
+
DEFAULT_RANSAC_REPROJ_THRESHOLD,
|
| 12 |
+
DEFAULT_RANSAC_CONFIDENCE,
|
| 13 |
+
DEFAULT_RANSAC_MAX_ITER,
|
| 14 |
+
DEFAULT_MATCHING_THRESHOLD,
|
| 15 |
+
DEFAULT_SETTING_MAX_FEATURES,
|
| 16 |
+
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD,
|
| 17 |
)
|
| 18 |
|
| 19 |
DESCRIPTION = """
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
def ui_change_imagebox(choice):
|
| 32 |
+
"""
|
| 33 |
+
Updates the image box with the given choice.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
choice (list): The list of image sources to be displayed in the image box.
|
| 37 |
+
|
| 38 |
+
Returns:
|
| 39 |
+
dict: A dictionary containing the updated value, sources, and type for the image box.
|
| 40 |
+
"""
|
| 41 |
+
return {
|
| 42 |
+
"value": None, # The updated value of the image box
|
| 43 |
+
"sources": choice, # The list of image sources to be displayed
|
| 44 |
+
"__type__": "update", # The type of update for the image box
|
| 45 |
+
}
|
| 46 |
|
| 47 |
|
| 48 |
+
def ui_reset_state(*args):
|
| 49 |
+
"""
|
| 50 |
+
Reset the state of the UI.
|
| 51 |
+
|
| 52 |
+
Returns:
|
| 53 |
+
tuple: A tuple containing the initial values for the UI state.
|
| 54 |
+
"""
|
| 55 |
+
key = list(matcher_zoo.keys())[0] # Get the first key from matcher_zoo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
return (
|
| 57 |
+
None, # image0
|
| 58 |
+
None, # image1
|
| 59 |
+
DEFAULT_MATCHING_THRESHOLD, # matching_threshold
|
| 60 |
+
DEFAULT_SETTING_MAX_FEATURES, # max_features
|
| 61 |
+
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD, # keypoint_threshold
|
| 62 |
+
key, # matcher
|
| 63 |
+
ui_change_imagebox("upload"), # input image0
|
| 64 |
+
ui_change_imagebox("upload"), # input image1
|
| 65 |
+
"upload", # match_image_src
|
| 66 |
None, # keypoints
|
| 67 |
None, # raw matches
|
| 68 |
None, # ransac matches
|
| 69 |
+
{}, # matches result info
|
| 70 |
+
{}, # matcher config
|
| 71 |
+
None, # warped image
|
| 72 |
+
{}, # geometry result
|
| 73 |
+
DEFAULT_RANSAC_METHOD, # ransac_method
|
| 74 |
+
DEFAULT_RANSAC_REPROJ_THRESHOLD, # ransac_reproj_threshold
|
| 75 |
+
DEFAULT_RANSAC_CONFIDENCE, # ransac_confidence
|
| 76 |
+
DEFAULT_RANSAC_MAX_ITER, # ransac_max_iter
|
| 77 |
+
DEFAULT_SETTING_GEOMETRY, # geometry
|
|
|
|
| 78 |
)
|
| 79 |
|
| 80 |
|
| 81 |
# "footer {visibility: hidden}"
|
| 82 |
def run(config):
|
| 83 |
+
"""
|
| 84 |
+
Runs the application.
|
| 85 |
+
|
| 86 |
+
Args:
|
| 87 |
+
config (dict): A dictionary containing configuration parameters for the application.
|
| 88 |
+
|
| 89 |
+
Returns:
|
| 90 |
+
None
|
| 91 |
+
"""
|
| 92 |
with gr.Blocks(css="style.css") as app:
|
| 93 |
gr.Markdown(DESCRIPTION)
|
| 94 |
|
|
|
|
| 110 |
input_image0 = gr.Image(
|
| 111 |
label="Image 0",
|
| 112 |
type="numpy",
|
|
|
|
| 113 |
image_mode="RGB",
|
| 114 |
+
height=300,
|
| 115 |
+
interactive=True,
|
| 116 |
)
|
| 117 |
input_image1 = gr.Image(
|
| 118 |
label="Image 1",
|
| 119 |
type="numpy",
|
|
|
|
| 120 |
image_mode="RGB",
|
| 121 |
+
height=300,
|
| 122 |
+
interactive=True,
|
| 123 |
)
|
| 124 |
|
| 125 |
with gr.Row():
|
| 126 |
button_reset = gr.Button(value="Reset")
|
| 127 |
+
button_run = gr.Button(value="Run Match", variant="primary")
|
|
|
|
|
|
|
| 128 |
|
| 129 |
with gr.Accordion("Advanced Setting", open=False):
|
| 130 |
with gr.Accordion("Matching Setting", open=True):
|
|
|
|
| 169 |
# enable_ransac = gr.Checkbox(label="Enable RANSAC")
|
| 170 |
ransac_method = gr.Dropdown(
|
| 171 |
choices=ransac_zoo.keys(),
|
| 172 |
+
value=DEFAULT_RANSAC_METHOD,
|
| 173 |
label="RANSAC Method",
|
| 174 |
interactive=True,
|
| 175 |
)
|
|
|
|
| 201 |
choice_estimate_geom = gr.Radio(
|
| 202 |
["Fundamental", "Homography"],
|
| 203 |
label="Reconstruct Geometry",
|
| 204 |
+
value=DEFAULT_SETTING_GEOMETRY,
|
| 205 |
)
|
| 206 |
|
| 207 |
# with gr.Column():
|
|
|
|
| 213 |
match_setting_max_features,
|
| 214 |
detect_keypoints_threshold,
|
| 215 |
matcher_list,
|
|
|
|
| 216 |
ransac_method,
|
| 217 |
ransac_reproj_threshold,
|
| 218 |
ransac_confidence,
|
|
|
|
| 258 |
output_wrapped = gr.Image(
|
| 259 |
label="Wrapped Pair", type="numpy"
|
| 260 |
)
|
| 261 |
+
with gr.Accordion(
|
| 262 |
+
"Open for More: Geometry info", open=False
|
| 263 |
+
):
|
| 264 |
+
geometry_result = gr.JSON(
|
| 265 |
+
label="Reconstructed Geometry"
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
# callbacks
|
| 269 |
match_image_src.change(
|
| 270 |
fn=ui_change_imagebox,
|
|
|
|
| 308 |
matcher_info,
|
| 309 |
output_wrapped,
|
| 310 |
geometry_result,
|
|
|
|
| 311 |
ransac_method,
|
| 312 |
ransac_reproj_threshold,
|
| 313 |
ransac_confidence,
|
common/utils.py
CHANGED
|
@@ -13,6 +13,18 @@ from .viz import draw_matches, fig2im, plot_images, plot_color_line_matches
|
|
| 13 |
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def get_model(match_conf):
|
| 18 |
Model = dynamic_load(matchers, match_conf["model"]["name"])
|
|
@@ -52,14 +64,13 @@ def gen_examples():
|
|
| 52 |
# image pair path
|
| 53 |
path = "datasets/sacre_coeur/mapping"
|
| 54 |
pairs = gen_images_pairs(path, len(example_matchers))
|
| 55 |
-
match_setting_threshold =
|
| 56 |
-
match_setting_max_features =
|
| 57 |
-
detect_keypoints_threshold =
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
ransac_max_iter = 10000
|
| 63 |
input_lists = []
|
| 64 |
for pair, mt in zip(pairs, example_matchers):
|
| 65 |
input_lists.append(
|
|
@@ -82,10 +93,10 @@ def gen_examples():
|
|
| 82 |
|
| 83 |
def filter_matches(
|
| 84 |
pred,
|
| 85 |
-
ransac_method=
|
| 86 |
-
ransac_reproj_threshold=
|
| 87 |
-
ransac_confidence=
|
| 88 |
-
ransac_max_iter=
|
| 89 |
):
|
| 90 |
mkpts0 = None
|
| 91 |
mkpts1 = None
|
|
@@ -106,9 +117,9 @@ def filter_matches(
|
|
| 106 |
if mkpts0 is None or mkpts0 is None:
|
| 107 |
return pred
|
| 108 |
if ransac_method not in ransac_zoo.keys():
|
| 109 |
-
ransac_method =
|
| 110 |
|
| 111 |
-
if len(mkpts0) <
|
| 112 |
return pred
|
| 113 |
H, mask = cv2.findHomography(
|
| 114 |
mkpts0,
|
|
@@ -132,10 +143,10 @@ def filter_matches(
|
|
| 132 |
|
| 133 |
def compute_geom(
|
| 134 |
pred,
|
| 135 |
-
ransac_method=
|
| 136 |
-
ransac_reproj_threshold=
|
| 137 |
-
ransac_confidence=
|
| 138 |
-
ransac_max_iter=
|
| 139 |
) -> dict:
|
| 140 |
mkpts0 = None
|
| 141 |
mkpts1 = None
|
|
@@ -152,7 +163,7 @@ def compute_geom(
|
|
| 152 |
mkpts1 = pred["line_keypoints1_orig"]
|
| 153 |
|
| 154 |
if mkpts0 is not None and mkpts1 is not None:
|
| 155 |
-
if len(mkpts0) <
|
| 156 |
return {}
|
| 157 |
h1, w1, _ = pred["image0_orig"].shape
|
| 158 |
geo_info = {}
|
|
@@ -309,12 +320,11 @@ def run_matching(
|
|
| 309 |
extract_max_keypoints,
|
| 310 |
keypoint_threshold,
|
| 311 |
key,
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
choice_estimate_geom="Homography",
|
| 318 |
):
|
| 319 |
# image0 and image1 is RGB mode
|
| 320 |
if image0 is None or image1 is None:
|
|
@@ -420,7 +430,6 @@ def run_matching(
|
|
| 420 |
"geom_info": geom_info,
|
| 421 |
},
|
| 422 |
output_wrapped,
|
| 423 |
-
# geometry_result,
|
| 424 |
)
|
| 425 |
|
| 426 |
|
|
|
|
| 13 |
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
|
| 16 |
+
DEFAULT_SETTING_THRESHOLD = 0.1
|
| 17 |
+
DEFAULT_SETTING_MAX_FEATURES = 2000
|
| 18 |
+
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD = 0.01
|
| 19 |
+
DEFAULT_ENABLE_RANSAC = True
|
| 20 |
+
DEFAULT_RANSAC_METHOD = "USAC_MAGSAC"
|
| 21 |
+
DEFAULT_RANSAC_REPROJ_THRESHOLD = 8
|
| 22 |
+
DEFAULT_RANSAC_CONFIDENCE = 0.999
|
| 23 |
+
DEFAULT_RANSAC_MAX_ITER = 10000
|
| 24 |
+
DEFAULT_MIN_NUM_MATCHES = 4
|
| 25 |
+
DEFAULT_MATCHING_THRESHOLD = 0.2
|
| 26 |
+
DEFAULT_SETTING_GEOMETRY = "Homography"
|
| 27 |
+
|
| 28 |
|
| 29 |
def get_model(match_conf):
|
| 30 |
Model = dynamic_load(matchers, match_conf["model"]["name"])
|
|
|
|
| 64 |
# image pair path
|
| 65 |
path = "datasets/sacre_coeur/mapping"
|
| 66 |
pairs = gen_images_pairs(path, len(example_matchers))
|
| 67 |
+
match_setting_threshold = DEFAULT_SETTING_THRESHOLD
|
| 68 |
+
match_setting_max_features = DEFAULT_SETTING_MAX_FEATURES
|
| 69 |
+
detect_keypoints_threshold = DEFAULT_DEFAULT_KEYPOINT_THRESHOLD
|
| 70 |
+
ransac_method = DEFAULT_RANSAC_METHOD
|
| 71 |
+
ransac_reproj_threshold = DEFAULT_RANSAC_REPROJ_THRESHOLD
|
| 72 |
+
ransac_confidence = DEFAULT_RANSAC_CONFIDENCE
|
| 73 |
+
ransac_max_iter = DEFAULT_RANSAC_MAX_ITER
|
|
|
|
| 74 |
input_lists = []
|
| 75 |
for pair, mt in zip(pairs, example_matchers):
|
| 76 |
input_lists.append(
|
|
|
|
| 93 |
|
| 94 |
def filter_matches(
|
| 95 |
pred,
|
| 96 |
+
ransac_method=DEFAULT_RANSAC_METHOD,
|
| 97 |
+
ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
|
| 98 |
+
ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
|
| 99 |
+
ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
|
| 100 |
):
|
| 101 |
mkpts0 = None
|
| 102 |
mkpts1 = None
|
|
|
|
| 117 |
if mkpts0 is None or mkpts0 is None:
|
| 118 |
return pred
|
| 119 |
if ransac_method not in ransac_zoo.keys():
|
| 120 |
+
ransac_method = DEFAULT_RANSAC_METHOD
|
| 121 |
|
| 122 |
+
if len(mkpts0) < DEFAULT_MIN_NUM_MATCHES:
|
| 123 |
return pred
|
| 124 |
H, mask = cv2.findHomography(
|
| 125 |
mkpts0,
|
|
|
|
| 143 |
|
| 144 |
def compute_geom(
|
| 145 |
pred,
|
| 146 |
+
ransac_method=DEFAULT_RANSAC_METHOD,
|
| 147 |
+
ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
|
| 148 |
+
ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
|
| 149 |
+
ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
|
| 150 |
) -> dict:
|
| 151 |
mkpts0 = None
|
| 152 |
mkpts1 = None
|
|
|
|
| 163 |
mkpts1 = pred["line_keypoints1_orig"]
|
| 164 |
|
| 165 |
if mkpts0 is not None and mkpts1 is not None:
|
| 166 |
+
if len(mkpts0) < 2 * DEFAULT_MIN_NUM_MATCHES:
|
| 167 |
return {}
|
| 168 |
h1, w1, _ = pred["image0_orig"].shape
|
| 169 |
geo_info = {}
|
|
|
|
| 320 |
extract_max_keypoints,
|
| 321 |
keypoint_threshold,
|
| 322 |
key,
|
| 323 |
+
ransac_method=DEFAULT_RANSAC_METHOD,
|
| 324 |
+
ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
|
| 325 |
+
ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
|
| 326 |
+
ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
|
| 327 |
+
choice_estimate_geom=DEFAULT_SETTING_GEOMETRY,
|
|
|
|
| 328 |
):
|
| 329 |
# image0 and image1 is RGB mode
|
| 330 |
if image0 is None or image1 is None:
|
|
|
|
| 430 |
"geom_info": geom_info,
|
| 431 |
},
|
| 432 |
output_wrapped,
|
|
|
|
| 433 |
)
|
| 434 |
|
| 435 |
|
common/viz.py
CHANGED
|
@@ -1,25 +1,9 @@
|
|
| 1 |
-
import bisect
|
| 2 |
import numpy as np
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
-
import matplotlib
|
| 5 |
-
import matplotlib.cm as cm
|
| 6 |
-
from PIL import Image
|
| 7 |
-
import torch.nn.functional as F
|
| 8 |
-
import torch
|
| 9 |
import seaborn as sns
|
| 10 |
|
| 11 |
|
| 12 |
-
def _compute_conf_thresh(data):
|
| 13 |
-
dataset_name = data["dataset_name"][0].lower()
|
| 14 |
-
if dataset_name == "scannet":
|
| 15 |
-
thr = 5e-4
|
| 16 |
-
elif dataset_name == "megadepth":
|
| 17 |
-
thr = 1e-4
|
| 18 |
-
else:
|
| 19 |
-
raise ValueError(f"Unknown dataset: {dataset_name}")
|
| 20 |
-
return thr
|
| 21 |
-
|
| 22 |
-
|
| 23 |
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=5, pad=0.5):
|
| 24 |
"""Plot a set of images horizontally.
|
| 25 |
Args:
|
|
@@ -172,95 +156,6 @@ def make_matching_figure(
|
|
| 172 |
return fig
|
| 173 |
|
| 174 |
|
| 175 |
-
def _make_evaluation_figure(data, b_id, alpha="dynamic"):
|
| 176 |
-
b_mask = data["m_bids"] == b_id
|
| 177 |
-
conf_thr = _compute_conf_thresh(data)
|
| 178 |
-
|
| 179 |
-
img0 = (
|
| 180 |
-
(data["image0"][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
|
| 181 |
-
)
|
| 182 |
-
img1 = (
|
| 183 |
-
(data["image1"][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
|
| 184 |
-
)
|
| 185 |
-
kpts0 = data["mkpts0_f"][b_mask].cpu().numpy()
|
| 186 |
-
kpts1 = data["mkpts1_f"][b_mask].cpu().numpy()
|
| 187 |
-
|
| 188 |
-
# for megadepth, we visualize matches on the resized image
|
| 189 |
-
if "scale0" in data:
|
| 190 |
-
kpts0 = kpts0 / data["scale0"][b_id].cpu().numpy()[[1, 0]]
|
| 191 |
-
kpts1 = kpts1 / data["scale1"][b_id].cpu().numpy()[[1, 0]]
|
| 192 |
-
|
| 193 |
-
epi_errs = data["epi_errs"][b_mask].cpu().numpy()
|
| 194 |
-
correct_mask = epi_errs < conf_thr
|
| 195 |
-
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
|
| 196 |
-
n_correct = np.sum(correct_mask)
|
| 197 |
-
n_gt_matches = int(data["conf_matrix_gt"][b_id].sum().cpu())
|
| 198 |
-
recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches)
|
| 199 |
-
# recall might be larger than 1, since the calculation of conf_matrix_gt
|
| 200 |
-
# uses groundtruth depths and camera poses, but epipolar distance is used here.
|
| 201 |
-
|
| 202 |
-
# matching info
|
| 203 |
-
if alpha == "dynamic":
|
| 204 |
-
alpha = dynamic_alpha(len(correct_mask))
|
| 205 |
-
color = error_colormap(epi_errs, conf_thr, alpha=alpha)
|
| 206 |
-
|
| 207 |
-
text = [
|
| 208 |
-
f"#Matches {len(kpts0)}",
|
| 209 |
-
f"Precision({conf_thr:.2e}) ({100 * precision:.1f}%):"
|
| 210 |
-
f" {n_correct}/{len(kpts0)}",
|
| 211 |
-
f"Recall({conf_thr:.2e}) ({100 * recall:.1f}%):"
|
| 212 |
-
f" {n_correct}/{n_gt_matches}",
|
| 213 |
-
]
|
| 214 |
-
|
| 215 |
-
# make the figure
|
| 216 |
-
figure = make_matching_figure(img0, img1, kpts0, kpts1, color, text=text)
|
| 217 |
-
return figure
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
def _make_confidence_figure(data, b_id):
|
| 221 |
-
# TODO: Implement confidence figure
|
| 222 |
-
raise NotImplementedError()
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
def make_matching_figures(data, config, mode="evaluation"):
|
| 226 |
-
"""Make matching figures for a batch.
|
| 227 |
-
|
| 228 |
-
Args:
|
| 229 |
-
data (Dict): a batch updated by PL_LoFTR.
|
| 230 |
-
config (Dict): matcher config
|
| 231 |
-
Returns:
|
| 232 |
-
figures (Dict[str, List[plt.figure]]
|
| 233 |
-
"""
|
| 234 |
-
assert mode in ["evaluation", "confidence"] # 'confidence'
|
| 235 |
-
figures = {mode: []}
|
| 236 |
-
for b_id in range(data["image0"].size(0)):
|
| 237 |
-
if mode == "evaluation":
|
| 238 |
-
fig = _make_evaluation_figure(
|
| 239 |
-
data, b_id, alpha=config.TRAINER.PLOT_MATCHES_ALPHA
|
| 240 |
-
)
|
| 241 |
-
elif mode == "confidence":
|
| 242 |
-
fig = _make_confidence_figure(data, b_id)
|
| 243 |
-
else:
|
| 244 |
-
raise ValueError(f"Unknown plot mode: {mode}")
|
| 245 |
-
figures[mode].append(fig)
|
| 246 |
-
return figures
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
def dynamic_alpha(
|
| 250 |
-
n_matches, milestones=[0, 300, 1000, 2000], alphas=[1.0, 0.8, 0.4, 0.2]
|
| 251 |
-
):
|
| 252 |
-
if n_matches == 0:
|
| 253 |
-
return 1.0
|
| 254 |
-
ranges = list(zip(alphas, alphas[1:] + [None]))
|
| 255 |
-
loc = bisect.bisect_right(milestones, n_matches) - 1
|
| 256 |
-
_range = ranges[loc]
|
| 257 |
-
if _range[1] is None:
|
| 258 |
-
return _range[0]
|
| 259 |
-
return _range[1] + (milestones[loc + 1] - n_matches) / (
|
| 260 |
-
milestones[loc + 1] - milestones[loc]
|
| 261 |
-
) * (_range[0] - _range[1])
|
| 262 |
-
|
| 263 |
-
|
| 264 |
def error_colormap(err, thr, alpha=1.0):
|
| 265 |
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
|
| 266 |
x = 1 - np.clip(err / (thr * 2), 0, 1)
|
|
@@ -278,245 +173,6 @@ color_map = np.arange(100)
|
|
| 278 |
np.random.shuffle(color_map)
|
| 279 |
|
| 280 |
|
| 281 |
-
def draw_topics(
|
| 282 |
-
data,
|
| 283 |
-
img0,
|
| 284 |
-
img1,
|
| 285 |
-
saved_folder="viz_topics",
|
| 286 |
-
show_n_topics=8,
|
| 287 |
-
saved_name=None,
|
| 288 |
-
):
|
| 289 |
-
topic0, topic1 = data["topic_matrix"]["img0"], data["topic_matrix"]["img1"]
|
| 290 |
-
hw0_c, hw1_c = data["hw0_c"], data["hw1_c"]
|
| 291 |
-
hw0_i, hw1_i = data["hw0_i"], data["hw1_i"]
|
| 292 |
-
# print(hw0_i, hw1_i)
|
| 293 |
-
scale0, scale1 = hw0_i[0] // hw0_c[0], hw1_i[0] // hw1_c[0]
|
| 294 |
-
if "scale0" in data:
|
| 295 |
-
scale0 *= data["scale0"][0]
|
| 296 |
-
else:
|
| 297 |
-
scale0 = (scale0, scale0)
|
| 298 |
-
if "scale1" in data:
|
| 299 |
-
scale1 *= data["scale1"][0]
|
| 300 |
-
else:
|
| 301 |
-
scale1 = (scale1, scale1)
|
| 302 |
-
|
| 303 |
-
n_topics = topic0.shape[-1]
|
| 304 |
-
# mask0_nonzero = topic0[0].sum(dim=-1, keepdim=True) > 0
|
| 305 |
-
# mask1_nonzero = topic1[0].sum(dim=-1, keepdim=True) > 0
|
| 306 |
-
theta0 = topic0[0].sum(dim=0)
|
| 307 |
-
theta0 /= theta0.sum().float()
|
| 308 |
-
theta1 = topic1[0].sum(dim=0)
|
| 309 |
-
theta1 /= theta1.sum().float()
|
| 310 |
-
# top_topic0 = torch.argsort(theta0, descending=True)[:show_n_topics]
|
| 311 |
-
# top_topic1 = torch.argsort(theta1, descending=True)[:show_n_topics]
|
| 312 |
-
top_topics = torch.argsort(theta0 * theta1, descending=True)[:show_n_topics]
|
| 313 |
-
# print(sum_topic0, sum_topic1)
|
| 314 |
-
|
| 315 |
-
topic0 = topic0[0].argmax(
|
| 316 |
-
dim=-1, keepdim=True
|
| 317 |
-
) # .float() / (n_topics - 1) #* 255 + 1 #
|
| 318 |
-
# topic0[~mask0_nonzero] = -1
|
| 319 |
-
topic1 = topic1[0].argmax(
|
| 320 |
-
dim=-1, keepdim=True
|
| 321 |
-
) # .float() / (n_topics - 1) #* 255 + 1
|
| 322 |
-
# topic1[~mask1_nonzero] = -1
|
| 323 |
-
label_img0, label_img1 = (
|
| 324 |
-
torch.zeros_like(topic0) - 1,
|
| 325 |
-
torch.zeros_like(topic1) - 1,
|
| 326 |
-
)
|
| 327 |
-
for i, k in enumerate(top_topics):
|
| 328 |
-
label_img0[topic0 == k] = color_map[k]
|
| 329 |
-
label_img1[topic1 == k] = color_map[k]
|
| 330 |
-
|
| 331 |
-
# print(hw0_c, scale0)
|
| 332 |
-
# print(hw1_c, scale1)
|
| 333 |
-
# map_topic0 = F.fold(label_img0.unsqueeze(0), hw0_i, kernel_size=scale0, stride=scale0)
|
| 334 |
-
map_topic0 = (
|
| 335 |
-
label_img0.float().view(hw0_c).cpu().numpy()
|
| 336 |
-
) # map_topic0.squeeze(0).squeeze(0).cpu().numpy()
|
| 337 |
-
map_topic0 = cv2.resize(
|
| 338 |
-
map_topic0, (int(hw0_c[1] * scale0[0]), int(hw0_c[0] * scale0[1]))
|
| 339 |
-
)
|
| 340 |
-
# map_topic1 = F.fold(label_img1.unsqueeze(0), hw1_i, kernel_size=scale1, stride=scale1)
|
| 341 |
-
map_topic1 = (
|
| 342 |
-
label_img1.float().view(hw1_c).cpu().numpy()
|
| 343 |
-
) # map_topic1.squeeze(0).squeeze(0).cpu().numpy()
|
| 344 |
-
map_topic1 = cv2.resize(
|
| 345 |
-
map_topic1, (int(hw1_c[1] * scale1[0]), int(hw1_c[0] * scale1[1]))
|
| 346 |
-
)
|
| 347 |
-
|
| 348 |
-
# show image0
|
| 349 |
-
if saved_name is None:
|
| 350 |
-
return map_topic0, map_topic1
|
| 351 |
-
|
| 352 |
-
if not os.path.exists(saved_folder):
|
| 353 |
-
os.makedirs(saved_folder)
|
| 354 |
-
path_saved_img0 = os.path.join(saved_folder, "{}_0.png".format(saved_name))
|
| 355 |
-
plt.imshow(img0)
|
| 356 |
-
masked_map_topic0 = np.ma.masked_where(map_topic0 < 0, map_topic0)
|
| 357 |
-
plt.imshow(
|
| 358 |
-
masked_map_topic0,
|
| 359 |
-
cmap=plt.cm.jet,
|
| 360 |
-
vmin=0,
|
| 361 |
-
vmax=n_topics - 1,
|
| 362 |
-
alpha=0.3,
|
| 363 |
-
interpolation="bilinear",
|
| 364 |
-
)
|
| 365 |
-
# plt.show()
|
| 366 |
-
plt.axis("off")
|
| 367 |
-
plt.savefig(path_saved_img0, bbox_inches="tight", pad_inches=0, dpi=250)
|
| 368 |
-
plt.close()
|
| 369 |
-
|
| 370 |
-
path_saved_img1 = os.path.join(saved_folder, "{}_1.png".format(saved_name))
|
| 371 |
-
plt.imshow(img1)
|
| 372 |
-
masked_map_topic1 = np.ma.masked_where(map_topic1 < 0, map_topic1)
|
| 373 |
-
plt.imshow(
|
| 374 |
-
masked_map_topic1,
|
| 375 |
-
cmap=plt.cm.jet,
|
| 376 |
-
vmin=0,
|
| 377 |
-
vmax=n_topics - 1,
|
| 378 |
-
alpha=0.3,
|
| 379 |
-
interpolation="bilinear",
|
| 380 |
-
)
|
| 381 |
-
plt.axis("off")
|
| 382 |
-
plt.savefig(path_saved_img1, bbox_inches="tight", pad_inches=0, dpi=250)
|
| 383 |
-
plt.close()
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
def draw_topicfm_demo(
|
| 387 |
-
data,
|
| 388 |
-
img0,
|
| 389 |
-
img1,
|
| 390 |
-
mkpts0,
|
| 391 |
-
mkpts1,
|
| 392 |
-
mcolor,
|
| 393 |
-
text,
|
| 394 |
-
show_n_topics=8,
|
| 395 |
-
topic_alpha=0.3,
|
| 396 |
-
margin=5,
|
| 397 |
-
path=None,
|
| 398 |
-
opencv_display=False,
|
| 399 |
-
opencv_title="",
|
| 400 |
-
):
|
| 401 |
-
topic_map0, topic_map1 = draw_topics(
|
| 402 |
-
data, img0, img1, show_n_topics=show_n_topics
|
| 403 |
-
)
|
| 404 |
-
|
| 405 |
-
mask_tm0, mask_tm1 = np.expand_dims(
|
| 406 |
-
topic_map0 >= 0, axis=-1
|
| 407 |
-
), np.expand_dims(topic_map1 >= 0, axis=-1)
|
| 408 |
-
|
| 409 |
-
topic_cm0, topic_cm1 = cm.jet(topic_map0 / 99.0), cm.jet(topic_map1 / 99.0)
|
| 410 |
-
topic_cm0 = cv2.cvtColor(
|
| 411 |
-
topic_cm0[..., :3].astype(np.float32), cv2.COLOR_RGB2BGR
|
| 412 |
-
)
|
| 413 |
-
topic_cm1 = cv2.cvtColor(
|
| 414 |
-
topic_cm1[..., :3].astype(np.float32), cv2.COLOR_RGB2BGR
|
| 415 |
-
)
|
| 416 |
-
overlay0 = (mask_tm0 * topic_cm0 + (1 - mask_tm0) * img0).astype(np.float32)
|
| 417 |
-
overlay1 = (mask_tm1 * topic_cm1 + (1 - mask_tm1) * img1).astype(np.float32)
|
| 418 |
-
|
| 419 |
-
cv2.addWeighted(overlay0, topic_alpha, img0, 1 - topic_alpha, 0, overlay0)
|
| 420 |
-
cv2.addWeighted(overlay1, topic_alpha, img1, 1 - topic_alpha, 0, overlay1)
|
| 421 |
-
|
| 422 |
-
overlay0, overlay1 = (overlay0 * 255).astype(np.uint8), (
|
| 423 |
-
overlay1 * 255
|
| 424 |
-
).astype(np.uint8)
|
| 425 |
-
|
| 426 |
-
h0, w0 = img0.shape[:2]
|
| 427 |
-
h1, w1 = img1.shape[:2]
|
| 428 |
-
h, w = h0 * 2 + margin * 2, w0 * 2 + margin
|
| 429 |
-
out_fig = 255 * np.ones((h, w, 3), dtype=np.uint8)
|
| 430 |
-
out_fig[:h0, :w0] = overlay0
|
| 431 |
-
if h0 >= h1:
|
| 432 |
-
start = (h0 - h1) // 2
|
| 433 |
-
out_fig[
|
| 434 |
-
start : (start + h1), (w0 + margin) : (w0 + margin + w1)
|
| 435 |
-
] = overlay1
|
| 436 |
-
else:
|
| 437 |
-
start = (h1 - h0) // 2
|
| 438 |
-
out_fig[:h0, (w0 + margin) : (w0 + margin + w1)] = overlay1[
|
| 439 |
-
start : (start + h0)
|
| 440 |
-
]
|
| 441 |
-
|
| 442 |
-
step_h = h0 + margin * 2
|
| 443 |
-
out_fig[step_h : step_h + h0, :w0] = (img0 * 255).astype(np.uint8)
|
| 444 |
-
if h0 >= h1:
|
| 445 |
-
start = step_h + (h0 - h1) // 2
|
| 446 |
-
out_fig[start : start + h1, (w0 + margin) : (w0 + margin + w1)] = (
|
| 447 |
-
img1 * 255
|
| 448 |
-
).astype(np.uint8)
|
| 449 |
-
else:
|
| 450 |
-
start = (h1 - h0) // 2
|
| 451 |
-
out_fig[step_h : step_h + h0, (w0 + margin) : (w0 + margin + w1)] = (
|
| 452 |
-
img1[start : start + h0] * 255
|
| 453 |
-
).astype(np.uint8)
|
| 454 |
-
|
| 455 |
-
# draw matching lines, this is inspried from
|
| 456 |
-
# https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/master/models/utils.py
|
| 457 |
-
mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int)
|
| 458 |
-
mcolor = (np.array(mcolor[:, [2, 1, 0]]) * 255).astype(int)
|
| 459 |
-
|
| 460 |
-
for (x0, y0), (x1, y1), c in zip(mkpts0, mkpts1, mcolor):
|
| 461 |
-
c = c.tolist()
|
| 462 |
-
cv2.line(
|
| 463 |
-
out_fig,
|
| 464 |
-
(x0, y0 + step_h),
|
| 465 |
-
(x1 + margin + w0, y1 + step_h + (h0 - h1) // 2),
|
| 466 |
-
color=c,
|
| 467 |
-
thickness=1,
|
| 468 |
-
lineType=cv2.LINE_AA,
|
| 469 |
-
)
|
| 470 |
-
# display line end-points as circles
|
| 471 |
-
cv2.circle(out_fig, (x0, y0 + step_h), 2, c, -1, lineType=cv2.LINE_AA)
|
| 472 |
-
cv2.circle(
|
| 473 |
-
out_fig,
|
| 474 |
-
(x1 + margin + w0, y1 + step_h + (h0 - h1) // 2),
|
| 475 |
-
2,
|
| 476 |
-
c,
|
| 477 |
-
-1,
|
| 478 |
-
lineType=cv2.LINE_AA,
|
| 479 |
-
)
|
| 480 |
-
|
| 481 |
-
# Scale factor for consistent visualization across scales.
|
| 482 |
-
sc = min(h / 960.0, 2.0)
|
| 483 |
-
|
| 484 |
-
# Big text.
|
| 485 |
-
Ht = int(30 * sc) # text height
|
| 486 |
-
txt_color_fg = (255, 255, 255)
|
| 487 |
-
txt_color_bg = (0, 0, 0)
|
| 488 |
-
for i, t in enumerate(text):
|
| 489 |
-
cv2.putText(
|
| 490 |
-
out_fig,
|
| 491 |
-
t,
|
| 492 |
-
(int(8 * sc), Ht + step_h * i),
|
| 493 |
-
cv2.FONT_HERSHEY_DUPLEX,
|
| 494 |
-
1.0 * sc,
|
| 495 |
-
txt_color_bg,
|
| 496 |
-
2,
|
| 497 |
-
cv2.LINE_AA,
|
| 498 |
-
)
|
| 499 |
-
cv2.putText(
|
| 500 |
-
out_fig,
|
| 501 |
-
t,
|
| 502 |
-
(int(8 * sc), Ht + step_h * i),
|
| 503 |
-
cv2.FONT_HERSHEY_DUPLEX,
|
| 504 |
-
1.0 * sc,
|
| 505 |
-
txt_color_fg,
|
| 506 |
-
1,
|
| 507 |
-
cv2.LINE_AA,
|
| 508 |
-
)
|
| 509 |
-
|
| 510 |
-
if path is not None:
|
| 511 |
-
cv2.imwrite(str(path), out_fig)
|
| 512 |
-
|
| 513 |
-
if opencv_display:
|
| 514 |
-
cv2.imshow(opencv_title, out_fig)
|
| 515 |
-
cv2.waitKey(1)
|
| 516 |
-
|
| 517 |
-
return out_fig
|
| 518 |
-
|
| 519 |
-
|
| 520 |
def fig2im(fig):
|
| 521 |
fig.canvas.draw()
|
| 522 |
w, h = fig.canvas.get_width_height()
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
+
import matplotlib
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import seaborn as sns
|
| 5 |
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=5, pad=0.5):
|
| 8 |
"""Plot a set of images horizontally.
|
| 9 |
Args:
|
|
|
|
| 156 |
return fig
|
| 157 |
|
| 158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
def error_colormap(err, thr, alpha=1.0):
|
| 160 |
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
|
| 161 |
x = 1 - np.clip(err / (thr * 2), 0, 1)
|
|
|
|
| 173 |
np.random.shuffle(color_map)
|
| 174 |
|
| 175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
def fig2im(fig):
|
| 177 |
fig.canvas.draw()
|
| 178 |
w, h = fig.canvas.get_width_height()
|
style.css
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
h1 {
|
| 2 |
text-align: center;
|
|
|
|
| 3 |
}
|
| 4 |
|
| 5 |
#duplicate-button {
|
|
|
|
| 1 |
h1 {
|
| 2 |
text-align: center;
|
| 3 |
+
display:block;
|
| 4 |
}
|
| 5 |
|
| 6 |
#duplicate-button {
|