Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| ''' | |
| COTR demo for human face | |
| We use an off-the-shelf face landmarks detector: https://github.com/1adrianb/face-alignment | |
| ''' | |
| import argparse | |
| import os | |
| import time | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import imageio | |
| import matplotlib.pyplot as plt | |
| from COTR.utils import utils, debug_utils | |
| from COTR.models import build_model | |
| from COTR.options.options import * | |
| from COTR.options.options_utils import * | |
| from COTR.inference.inference_helper import triangulate_corr | |
| from COTR.inference.sparse_engine import SparseEngine | |
| utils.fix_randomness(0) | |
| torch.set_grad_enabled(False) | |
| def main(opt): | |
| model = build_model(opt) | |
| model = model.cuda() | |
| weights = torch.load(opt.load_weights_path, map_location='cpu')['model_state_dict'] | |
| utils.safe_load_weights(model, weights) | |
| model = model.eval() | |
| img_a = imageio.imread('./sample_data/imgs/face_1.png', pilmode='RGB') | |
| img_b = imageio.imread('./sample_data/imgs/face_2.png', pilmode='RGB') | |
| queries = np.load('./sample_data/face_landmarks.npy')[0] | |
| engine = SparseEngine(model, 32, mode='stretching') | |
| corrs = engine.cotr_corr_multiscale(img_a, img_b, np.linspace(0.5, 0.0625, 4), 1, queries_a=queries, force=False) | |
| f, axarr = plt.subplots(1, 2) | |
| axarr[0].imshow(img_a) | |
| axarr[0].scatter(*queries.T, s=1) | |
| axarr[0].title.set_text('Reference Face') | |
| axarr[0].axis('off') | |
| axarr[1].imshow(img_b) | |
| axarr[1].scatter(*corrs[:, 2:].T, s=1) | |
| axarr[1].title.set_text('Target Face') | |
| axarr[1].axis('off') | |
| plt.show() | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| set_COTR_arguments(parser) | |
| parser.add_argument('--out_dir', type=str, default=general_config['out'], help='out directory') | |
| parser.add_argument('--load_weights', type=str, default=None, help='load a pretrained set of weights, you need to provide the model id') | |
| opt = parser.parse_args() | |
| opt.command = ' '.join(sys.argv) | |
| layer_2_channels = {'layer1': 256, | |
| 'layer2': 512, | |
| 'layer3': 1024, | |
| 'layer4': 2048, } | |
| opt.dim_feedforward = layer_2_channels[opt.layer] | |
| if opt.load_weights: | |
| opt.load_weights_path = os.path.join(opt.out_dir, opt.load_weights, 'checkpoint.pth.tar') | |
| print_opt(opt) | |
| main(opt) | |
 
			
