Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import argparse | |
| import gradio as gr | |
| from hloc import extract_features | |
| from extra_utils.utils import ( | |
| matcher_zoo, | |
| device, | |
| match_dense, | |
| match_features, | |
| get_model, | |
| get_feature_model, | |
| display_matches | |
| ) | |
| def run_matching( | |
| match_threshold, extract_max_keypoints, keypoint_threshold, key, image0, image1 | |
| ): | |
| # image0 and image1 is RGB mode | |
| if image0 is None or image1 is None: | |
| raise gr.Error("Error: No images found! Please upload two images.") | |
| model = matcher_zoo[key] | |
| match_conf = model["config"] | |
| # update match config | |
| match_conf["model"]["match_threshold"] = match_threshold | |
| match_conf["model"]["max_keypoints"] = extract_max_keypoints | |
| matcher = get_model(match_conf) | |
| if model["dense"]: | |
| pred = match_dense.match_images( | |
| matcher, image0, image1, match_conf["preprocessing"], device=device | |
| ) | |
| del matcher | |
| extract_conf = None | |
| else: | |
| extract_conf = model["config_feature"] | |
| # update extract config | |
| extract_conf["model"]["max_keypoints"] = extract_max_keypoints | |
| extract_conf["model"]["keypoint_threshold"] = keypoint_threshold | |
| extractor = get_feature_model(extract_conf) | |
| pred0 = extract_features.extract( | |
| extractor, image0, extract_conf["preprocessing"] | |
| ) | |
| pred1 = extract_features.extract( | |
| extractor, image1, extract_conf["preprocessing"] | |
| ) | |
| pred = match_features.match_images(matcher, pred0, pred1) | |
| del extractor | |
| fig, num_inliers = display_matches(pred) | |
| del pred | |
| return ( | |
| fig, | |
| {"matches number": num_inliers}, | |
| {"match_conf": match_conf, "extractor_conf": extract_conf}, | |
| ) | |
| def ui_change_imagebox(choice): | |
| return {"value": None, "source": choice, "__type__": "update"} | |
| def ui_reset_state( | |
| match_threshold, extract_max_keypoints, keypoint_threshold, key, image0, image1 | |
| ): | |
| match_threshold = 0.2 | |
| extract_max_keypoints = 1000 | |
| keypoint_threshold = 0.015 | |
| key = list(matcher_zoo.keys())[0] | |
| image0 = None | |
| image1 = None | |
| return ( | |
| match_threshold, | |
| extract_max_keypoints, | |
| keypoint_threshold, | |
| key, | |
| image0, | |
| image1, | |
| {"value": None, "source": "upload", "__type__": "update"}, | |
| {"value": None, "source": "upload", "__type__": "update"}, | |
| "upload", | |
| None, | |
| {}, | |
| {}, | |
| ) | |
| def run(config): | |
| with gr.Blocks( | |
| theme=gr.themes.Monochrome(), css="footer {visibility: hidden}" | |
| ) as app: | |
| gr.Markdown( | |
| """ | |
| <p align="center"> | |
| <h1 align="center">Image Matching WebUI</h1> | |
| </p> | |
| """ | |
| ) | |
| with gr.Row(equal_height=False): | |
| with gr.Column(): | |
| with gr.Row(): | |
| matcher_list = gr.Dropdown( | |
| choices=list(matcher_zoo.keys()), | |
| value="disk+lightglue", | |
| label="Matching Model", | |
| interactive=True, | |
| ) | |
| match_image_src = gr.Radio( | |
| ["upload", "webcam", "canvas"], | |
| label="Image Source", | |
| value="upload", | |
| ) | |
| with gr.Row(): | |
| match_setting_threshold = gr.Slider( | |
| minimum=0.0, | |
| maximum=1, | |
| step=0.001, | |
| label="Match threshold", | |
| value=0.1, | |
| ) | |
| match_setting_max_features = gr.Slider( | |
| minimum=10, | |
| maximum=10000, | |
| step=10, | |
| label="Max number of features", | |
| value=1000, | |
| ) | |
| # TODO: add line settings | |
| with gr.Row(): | |
| detect_keypoints_threshold = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| step=0.001, | |
| label="Keypoint threshold", | |
| value=0.015, | |
| ) | |
| detect_line_threshold = gr.Slider( | |
| minimum=0.1, | |
| maximum=1, | |
| step=0.01, | |
| label="Line threshold", | |
| value=0.2, | |
| ) | |
| # matcher_lists = gr.Radio( | |
| # ["NN-mutual", "Dual-Softmax"], | |
| # label="Matcher mode", | |
| # value="NN-mutual", | |
| # ) | |
| with gr.Row(): | |
| input_image0 = gr.Image( | |
| label="Image 0", | |
| type="numpy", | |
| interactive=True, | |
| image_mode="RGB", | |
| ) | |
| input_image1 = gr.Image( | |
| label="Image 1", | |
| type="numpy", | |
| interactive=True, | |
| image_mode="RGB", | |
| ) | |
| with gr.Row(): | |
| button_reset = gr.Button(label="Reset", value="Reset") | |
| button_run = gr.Button( | |
| label="Run Match", value="Run Match", variant="primary" | |
| ) | |
| with gr.Accordion("Open for More!", open=False): | |
| gr.Markdown( | |
| f""" | |
| <h3>Supported Algorithms</h3> | |
| {", ".join(matcher_zoo.keys())} | |
| """ | |
| ) | |
| # collect inputs | |
| inputs = [ | |
| match_setting_threshold, | |
| match_setting_max_features, | |
| detect_keypoints_threshold, | |
| matcher_list, | |
| input_image0, | |
| input_image1, | |
| ] | |
| # Add some examples | |
| with gr.Row(): | |
| examples = [ | |
| [ | |
| 0.1, | |
| 2000, | |
| 0.015, | |
| "disk+lightglue", | |
| "datasets/sacre_coeur/mapping/71295362_4051449754.jpg", | |
| "datasets/sacre_coeur/mapping/93341989_396310999.jpg", | |
| ], | |
| [ | |
| 0.1, | |
| 2000, | |
| 0.015, | |
| "loftr", | |
| "datasets/sacre_coeur/mapping/03903474_1471484089.jpg", | |
| "datasets/sacre_coeur/mapping/02928139_3448003521.jpg", | |
| ], | |
| [ | |
| 0.1, | |
| 2000, | |
| 0.015, | |
| "disk", | |
| "datasets/sacre_coeur/mapping/10265353_3838484249.jpg", | |
| "datasets/sacre_coeur/mapping/51091044_3486849416.jpg", | |
| ], | |
| [ | |
| 0.1, | |
| 2000, | |
| 0.015, | |
| "topicfm", | |
| "datasets/sacre_coeur/mapping/44120379_8371960244.jpg", | |
| "datasets/sacre_coeur/mapping/93341989_396310999.jpg", | |
| ], | |
| [ | |
| 0.1, | |
| 2000, | |
| 0.015, | |
| "superpoint+superglue", | |
| "datasets/sacre_coeur/mapping/17295357_9106075285.jpg", | |
| "datasets/sacre_coeur/mapping/44120379_8371960244.jpg", | |
| ], | |
| ] | |
| # Example inputs | |
| gr.Examples( | |
| examples=examples, | |
| inputs=inputs, | |
| outputs=[], | |
| fn=run_matching, | |
| cache_examples=False, | |
| label="Examples (click one of the images below to Run Match)", | |
| ) | |
| with gr.Column(): | |
| output_mkpts = gr.Image(label="Keypoints Matching", type="numpy") | |
| matches_result_info = gr.JSON(label="Matches Statistics") | |
| matcher_info = gr.JSON(label="Match info") | |
| # callbacks | |
| match_image_src.change( | |
| fn=ui_change_imagebox, inputs=match_image_src, outputs=input_image0 | |
| ) | |
| match_image_src.change( | |
| fn=ui_change_imagebox, inputs=match_image_src, outputs=input_image1 | |
| ) | |
| # collect outputs | |
| outputs = [ | |
| output_mkpts, | |
| matches_result_info, | |
| matcher_info, | |
| ] | |
| # button callbacks | |
| button_run.click(fn=run_matching, inputs=inputs, outputs=outputs) | |
| # Reset images | |
| reset_outputs = [ | |
| match_setting_threshold, | |
| match_setting_max_features, | |
| detect_keypoints_threshold, | |
| matcher_list, | |
| input_image0, | |
| input_image1, | |
| input_image0, | |
| input_image1, | |
| match_image_src, | |
| output_mkpts, | |
| matches_result_info, | |
| matcher_info, | |
| ] | |
| button_reset.click(fn=ui_reset_state, inputs=inputs, outputs=reset_outputs) | |
| app.launch(share=False) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--config_path", type=str, default="config.yaml", help="configuration file path" | |
| ) | |
| args = parser.parse_args() | |
| config = None | |
| run(config) | |
 
			
