Spaces:
Runtime error
Runtime error
Upload 8 files
Browse files- README.md +7 -6
- app.py +57 -0
- ccip.py +238 -0
- ccip_app.py +41 -0
- requirements.txt +17 -0
- /347/217/255/345/260/274/347/211/271.png +0 -0
- /350/212/255/350/212/255/346/213/211.png +0 -0
- /350/241/214/347/247/213.png +0 -0
README.md
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title: Genshin
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.10.0
|
| 8 |
app_file: app.py
|
| 9 |
-
pinned:
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Genshin-Impact-Character-CCIP
|
| 3 |
+
emoji: 🐱🏆
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.10.0
|
| 8 |
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from ccip import _VALID_MODEL_NAMES, _DEFAULT_MODEL_NAMES, ccip_difference, ccip_default_threshold
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
import pathlib
|
| 6 |
+
|
| 7 |
+
# 加载数据集
|
| 8 |
+
Genshin_Impact_Illustration_ds = load_dataset("svjack/Genshin-Impact-Illustration")["train"]
|
| 9 |
+
ds_size = len(Genshin_Impact_Illustration_ds)
|
| 10 |
+
name_image_dict = {}
|
| 11 |
+
for i in range(ds_size):
|
| 12 |
+
row_dict = Genshin_Impact_Illustration_ds[i]
|
| 13 |
+
name_image_dict[row_dict["name"]] = row_dict["image"]
|
| 14 |
+
|
| 15 |
+
# 从数据集中选择一些图片作为示例
|
| 16 |
+
#example_images = list(name_image_dict.values())[:5] # 选择前5张图片作为示例
|
| 17 |
+
example_images = list(map(str ,list(pathlib.Path(".").rglob("*.png"))))
|
| 18 |
+
|
| 19 |
+
def _compare_with_dataset(imagex, model_name):
|
| 20 |
+
threshold = ccip_default_threshold(model_name)
|
| 21 |
+
results = []
|
| 22 |
+
|
| 23 |
+
for name, imagey in name_image_dict.items():
|
| 24 |
+
diff = ccip_difference(imagex, imagey)
|
| 25 |
+
result = (diff, 'Same' if diff <= threshold else 'Not Same', name)
|
| 26 |
+
results.append(result)
|
| 27 |
+
|
| 28 |
+
# 按照 diff 值进行排序
|
| 29 |
+
results.sort(key=lambda x: x[0])
|
| 30 |
+
|
| 31 |
+
return results
|
| 32 |
+
|
| 33 |
+
if __name__ == '__main__':
|
| 34 |
+
with gr.Blocks() as demo:
|
| 35 |
+
with gr.Row():
|
| 36 |
+
with gr.Column():
|
| 37 |
+
# 添加示例图片
|
| 38 |
+
gr_input_x = gr.Image(type='pil', label='Upload Image')
|
| 39 |
+
gr_model_name = gr.Dropdown(_VALID_MODEL_NAMES, value=_DEFAULT_MODEL_NAMES, label='Model')
|
| 40 |
+
gr_button = gr.Button(value='Compare with Dataset', variant='primary')
|
| 41 |
+
|
| 42 |
+
gr.Examples(
|
| 43 |
+
examples=example_images, # 示例数据
|
| 44 |
+
inputs=[gr_input_x], # 示例数据对应的输入组件
|
| 45 |
+
label="Click on an example to load it into the input."
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
with gr.Column():
|
| 49 |
+
gr_results = gr.Dataframe(headers=["Difference", "Prediction", "Name"], label='Comparison Results')
|
| 50 |
+
|
| 51 |
+
gr_button.click(
|
| 52 |
+
_compare_with_dataset,
|
| 53 |
+
inputs=[gr_input_x, gr_model_name],
|
| 54 |
+
outputs=gr_results,
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
demo.queue(os.cpu_count()).launch(share=True)
|
ccip.py
ADDED
|
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os.path
|
| 3 |
+
from functools import lru_cache
|
| 4 |
+
from typing import Union, List
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from huggingface_hub import hf_hub_download, HfFileSystem
|
| 9 |
+
|
| 10 |
+
try:
|
| 11 |
+
from typing import Literal
|
| 12 |
+
except (ModuleNotFoundError, ImportError):
|
| 13 |
+
from typing_extensions import Literal
|
| 14 |
+
|
| 15 |
+
from imgutils.data import MultiImagesTyping, load_images, ImageTyping
|
| 16 |
+
from imgutils.utils import open_onnx_model
|
| 17 |
+
|
| 18 |
+
hf_fs = HfFileSystem()
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def _normalize(data, mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)):
|
| 22 |
+
mean, std = np.asarray(mean), np.asarray(std)
|
| 23 |
+
return (data - mean[:, None, None]) / std[:, None, None]
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def _preprocess_image(image: Image.Image, size: int = 384):
|
| 27 |
+
image = image.resize((size, size), resample=Image.BILINEAR)
|
| 28 |
+
# noinspection PyTypeChecker
|
| 29 |
+
data = np.array(image).transpose(2, 0, 1).astype(np.float32) / 255.0
|
| 30 |
+
data = _normalize(data)
|
| 31 |
+
|
| 32 |
+
return data
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
@lru_cache()
|
| 36 |
+
def _open_feat_model(model):
|
| 37 |
+
return open_onnx_model(hf_hub_download(
|
| 38 |
+
f'deepghs/ccip_onnx',
|
| 39 |
+
f'{model}/model_feat.onnx',
|
| 40 |
+
))
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
@lru_cache()
|
| 44 |
+
def _open_metric_model(model):
|
| 45 |
+
return open_onnx_model(hf_hub_download(
|
| 46 |
+
f'deepghs/ccip_onnx',
|
| 47 |
+
f'{model}/model_metrics.onnx',
|
| 48 |
+
))
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
@lru_cache()
|
| 52 |
+
def _open_metrics(model):
|
| 53 |
+
with open(hf_hub_download(f'deepghs/ccip_onnx', f'{model}/metrics.json'), 'r') as f:
|
| 54 |
+
return json.load(f)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
@lru_cache()
|
| 58 |
+
def _open_cluster_metrics(model):
|
| 59 |
+
with open(hf_hub_download(f'deepghs/ccip_onnx', f'{model}/cluster.json'), 'r') as f:
|
| 60 |
+
return json.load(f)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
_VALID_MODEL_NAMES = [
|
| 64 |
+
os.path.basename(os.path.dirname(file)) for file in
|
| 65 |
+
hf_fs.glob('deepghs/ccip_onnx/*/model.ckpt')
|
| 66 |
+
]
|
| 67 |
+
_DEFAULT_MODEL_NAMES = 'ccip-caformer-24-randaug-pruned'
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def ccip_extract_feature(image: ImageTyping, size: int = 384, model: str = _DEFAULT_MODEL_NAMES):
|
| 71 |
+
"""
|
| 72 |
+
Extracts the feature vector of the character from the given anime image.
|
| 73 |
+
|
| 74 |
+
:param image: The anime image containing a single character.
|
| 75 |
+
:type image: ImageTyping
|
| 76 |
+
|
| 77 |
+
:param size: The size of the input image to be used for feature extraction. (default: ``384``)
|
| 78 |
+
:type size: int
|
| 79 |
+
|
| 80 |
+
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
|
| 81 |
+
The available model names are: ``ccip-caformer-24-randaug-pruned``,
|
| 82 |
+
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
|
| 83 |
+
:type model: str
|
| 84 |
+
|
| 85 |
+
:return: The feature vector of the character.
|
| 86 |
+
:rtype: numpy.ndarray
|
| 87 |
+
|
| 88 |
+
Examples::
|
| 89 |
+
>>> from imgutils.metrics import ccip_extract_feature
|
| 90 |
+
>>>
|
| 91 |
+
>>> feat = ccip_extract_feature('ccip/1.jpg')
|
| 92 |
+
>>> feat.shape, feat.dtype
|
| 93 |
+
((768,), dtype('float32'))
|
| 94 |
+
"""
|
| 95 |
+
return ccip_batch_extract_features([image], size, model)[0]
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def ccip_batch_extract_features(images: MultiImagesTyping, size: int = 384, model: str = _DEFAULT_MODEL_NAMES):
|
| 99 |
+
"""
|
| 100 |
+
Extracts the feature vectors of multiple images using the specified model.
|
| 101 |
+
|
| 102 |
+
:param images: The input images from which to extract the feature vectors.
|
| 103 |
+
:type images: MultiImagesTyping
|
| 104 |
+
|
| 105 |
+
:param size: The size of the input image to be used for feature extraction. (default: ``384``)
|
| 106 |
+
:type size: int
|
| 107 |
+
|
| 108 |
+
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
|
| 109 |
+
The available model names are: ``ccip-caformer-24-randaug-pruned``,
|
| 110 |
+
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
|
| 111 |
+
:type model: str
|
| 112 |
+
|
| 113 |
+
:return: The feature vectors of the input images.
|
| 114 |
+
:rtype: numpy.ndarray
|
| 115 |
+
|
| 116 |
+
Examples::
|
| 117 |
+
>>> from imgutils.metrics import ccip_batch_extract_features
|
| 118 |
+
>>>
|
| 119 |
+
>>> feat = ccip_batch_extract_features(['ccip/1.jpg', 'ccip/2.jpg', 'ccip/6.jpg'])
|
| 120 |
+
>>> feat.shape, feat.dtype
|
| 121 |
+
((3, 768), dtype('float32'))
|
| 122 |
+
"""
|
| 123 |
+
images = load_images(images, mode='RGB')
|
| 124 |
+
data = np.stack([_preprocess_image(item, size=size) for item in images]).astype(np.float32)
|
| 125 |
+
output, = _open_feat_model(model).run(['output'], {'input': data})
|
| 126 |
+
return output
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
_FeatureOrImage = Union[ImageTyping, np.ndarray]
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def _p_feature(x: _FeatureOrImage, size: int = 384, model: str = _DEFAULT_MODEL_NAMES):
|
| 133 |
+
if isinstance(x, np.ndarray): # if feature
|
| 134 |
+
return x
|
| 135 |
+
else: # is image or path
|
| 136 |
+
return ccip_extract_feature(x, size, model)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def ccip_default_threshold(model: str = _DEFAULT_MODEL_NAMES) -> float:
|
| 140 |
+
"""
|
| 141 |
+
Retrieves the default threshold value obtained from model metrics in the Hugging Face model repository.
|
| 142 |
+
|
| 143 |
+
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
|
| 144 |
+
The available model names are: ``ccip-caformer-24-randaug-pruned``,
|
| 145 |
+
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
|
| 146 |
+
:type model: str
|
| 147 |
+
|
| 148 |
+
:return: The default threshold value obtained from model metrics.
|
| 149 |
+
:rtype: float
|
| 150 |
+
|
| 151 |
+
Examples::
|
| 152 |
+
>>> from imgutils.metrics import ccip_default_threshold
|
| 153 |
+
>>>
|
| 154 |
+
>>> ccip_default_threshold()
|
| 155 |
+
0.17847511429108218
|
| 156 |
+
>>> ccip_default_threshold('ccip-caformer-6-randaug-pruned_fp32')
|
| 157 |
+
0.1951224011983088
|
| 158 |
+
>>> ccip_default_threshold('ccip-caformer-5_fp32')
|
| 159 |
+
0.18397327797685215
|
| 160 |
+
"""
|
| 161 |
+
return _open_metrics(model)['threshold']
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def ccip_difference(x: _FeatureOrImage, y: _FeatureOrImage,
|
| 165 |
+
size: int = 384, model: str = _DEFAULT_MODEL_NAMES) -> float:
|
| 166 |
+
"""
|
| 167 |
+
Calculates the difference value between two anime characters based on their images or feature vectors.
|
| 168 |
+
|
| 169 |
+
:param x: The image or feature vector of the first anime character.
|
| 170 |
+
:type x: Union[ImageTyping, np.ndarray]
|
| 171 |
+
|
| 172 |
+
:param y: The image or feature vector of the second anime character.
|
| 173 |
+
:type y: Union[ImageTyping, np.ndarray]
|
| 174 |
+
|
| 175 |
+
:param size: The size of the input image to be used for feature extraction. (default: ``384``)
|
| 176 |
+
:type size: int
|
| 177 |
+
|
| 178 |
+
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
|
| 179 |
+
The available model names are: ``ccip-caformer-24-randaug-pruned``,
|
| 180 |
+
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
|
| 181 |
+
:type model: str
|
| 182 |
+
|
| 183 |
+
:return: The difference value between the two anime characters.
|
| 184 |
+
:rtype: float
|
| 185 |
+
|
| 186 |
+
Examples::
|
| 187 |
+
>>> from imgutils.metrics import ccip_difference
|
| 188 |
+
>>>
|
| 189 |
+
>>> ccip_difference('ccip/1.jpg', 'ccip/2.jpg') # same character
|
| 190 |
+
0.16583099961280823
|
| 191 |
+
>>>
|
| 192 |
+
>>> # different characters
|
| 193 |
+
>>> ccip_difference('ccip/1.jpg', 'ccip/6.jpg')
|
| 194 |
+
0.42947039008140564
|
| 195 |
+
>>> ccip_difference('ccip/1.jpg', 'ccip/7.jpg')
|
| 196 |
+
0.4037521779537201
|
| 197 |
+
>>> ccip_difference('ccip/2.jpg', 'ccip/6.jpg')
|
| 198 |
+
0.4371533691883087
|
| 199 |
+
>>> ccip_difference('ccip/2.jpg', 'ccip/7.jpg')
|
| 200 |
+
0.40748104453086853
|
| 201 |
+
>>> ccip_difference('ccip/6.jpg', 'ccip/7.jpg')
|
| 202 |
+
0.392294704914093
|
| 203 |
+
"""
|
| 204 |
+
return ccip_batch_differences([x, y], size, model)[0, 1].item()
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def ccip_batch_differences(images: List[_FeatureOrImage],
|
| 208 |
+
size: int = 384, model: str = _DEFAULT_MODEL_NAMES) -> np.ndarray:
|
| 209 |
+
"""
|
| 210 |
+
Calculates the pairwise differences between a given list of images or feature vectors representing anime characters.
|
| 211 |
+
|
| 212 |
+
:param images: The list of images or feature vectors representing anime characters.
|
| 213 |
+
:type images: List[Union[ImageTyping, np.ndarray]]
|
| 214 |
+
|
| 215 |
+
:param size: The size of the input image to be used for feature extraction. (default: ``384``)
|
| 216 |
+
:type size: int
|
| 217 |
+
|
| 218 |
+
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``)
|
| 219 |
+
The available model names are: ``ccip-caformer-24-randaug-pruned``,
|
| 220 |
+
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``.
|
| 221 |
+
:type model: str
|
| 222 |
+
|
| 223 |
+
:return: The matrix of pairwise differences between the given images or feature vectors.
|
| 224 |
+
:rtype: np.ndarray
|
| 225 |
+
|
| 226 |
+
Examples::
|
| 227 |
+
>>> from imgutils.metrics import ccip_batch_differences
|
| 228 |
+
>>>
|
| 229 |
+
>>> ccip_batch_differences(['ccip/1.jpg', 'ccip/2.jpg', 'ccip/6.jpg', 'ccip/7.jpg'])
|
| 230 |
+
array([[6.5350548e-08, 1.6583106e-01, 4.2947042e-01, 4.0375218e-01],
|
| 231 |
+
[1.6583106e-01, 9.8025822e-08, 4.3715334e-01, 4.0748104e-01],
|
| 232 |
+
[4.2947042e-01, 4.3715334e-01, 3.2675274e-08, 3.9229470e-01],
|
| 233 |
+
[4.0375218e-01, 4.0748104e-01, 3.9229470e-01, 6.5350548e-08]],
|
| 234 |
+
dtype=float32)
|
| 235 |
+
"""
|
| 236 |
+
input_ = np.stack([_p_feature(img, size, model) for img in images]).astype(np.float32)
|
| 237 |
+
output, = _open_metric_model(model).run(['output'], {'input': input_})
|
| 238 |
+
return output
|
ccip_app.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
from ccip import _VALID_MODEL_NAMES, _DEFAULT_MODEL_NAMES, ccip_difference, ccip_default_threshold
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def _compare(imagex, imagey, model_name):
|
| 9 |
+
threshold = ccip_default_threshold(model_name)
|
| 10 |
+
diff = ccip_difference(imagex, imagey)
|
| 11 |
+
|
| 12 |
+
return diff, 'Same' if diff <= threshold else 'Not Same'
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
if __name__ == '__main__':
|
| 16 |
+
with gr.Blocks() as demo:
|
| 17 |
+
with gr.Row():
|
| 18 |
+
with gr.Column():
|
| 19 |
+
with gr.Row():
|
| 20 |
+
with gr.Column():
|
| 21 |
+
gr_input_x = gr.Image(type='pil', label='Image X')
|
| 22 |
+
with gr.Column():
|
| 23 |
+
gr_input_y = gr.Image(type='pil', label='Image Y')
|
| 24 |
+
with gr.Row():
|
| 25 |
+
gr_model_name = gr.Dropdown(_VALID_MODEL_NAMES, value=_DEFAULT_MODEL_NAMES, label='Model')
|
| 26 |
+
|
| 27 |
+
gr_button = gr.Button(value='Compare', variant='primary')
|
| 28 |
+
|
| 29 |
+
with gr.Column():
|
| 30 |
+
with gr.Row():
|
| 31 |
+
gr_diff = gr.Number(value=0.0, label='Difference')
|
| 32 |
+
with gr.Row():
|
| 33 |
+
gr_prediction = gr.Text(value='', label='Prediction')
|
| 34 |
+
|
| 35 |
+
gr_button.click(
|
| 36 |
+
_compare,
|
| 37 |
+
inputs=[gr_input_x, gr_input_y, gr_model_name],
|
| 38 |
+
outputs=[gr_diff, gr_prediction],
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
demo.queue(os.cpu_count()).launch(share = True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#gradio==3.41.2
|
| 2 |
+
gradio==5.10.0
|
| 3 |
+
numpy
|
| 4 |
+
pillow
|
| 5 |
+
huggingface_hub
|
| 6 |
+
scikit-image
|
| 7 |
+
pandas
|
| 8 |
+
opencv-python>=4.6.0
|
| 9 |
+
hbutils>=0.9.0
|
| 10 |
+
dghs-imgutils[gpu]>=0.2.3
|
| 11 |
+
#### pip install onnxruntime-gpu==1.17.0 --index-url=https://pkgs.dev.azure.com/onnxruntime/onnxruntime/_packaging/onnxruntime-cuda-12/pypi/simple
|
| 12 |
+
onnxruntime-gpu==1.17.0
|
| 13 |
+
#dghs-imgutils>=0.2.3
|
| 14 |
+
#onnxruntime-cpu
|
| 15 |
+
httpx
|
| 16 |
+
|
| 17 |
+
datasets
|
/347/217/255/345/260/274/347/211/271.png
ADDED
|
/350/212/255/350/212/255/346/213/211.png
ADDED
|
/350/241/214/347/247/213.png
ADDED
|