diff --git a/.gitattributes b/.gitattributes
index a6344aac8c09253b3b630fb776ae94478aa0275b..3f7bba7c88eb4e774ad0f2f4a3ea7602b24029b3 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
 *.zip filter=lfs diff=lfs merge=lfs -text
 *.zst filter=lfs diff=lfs merge=lfs -text
 *tfevents* filter=lfs diff=lfs merge=lfs -text
+build/lib.linux-x86_64-cpython-310/sam2/_C.so filter=lfs diff=lfs merge=lfs -text
+build/temp.linux-x86_64-cpython-310/sam2/csrc/connected_components.o filter=lfs diff=lfs merge=lfs -text
+sam2/_C.so filter=lfs diff=lfs merge=lfs -text
diff --git a/assets/model_diagram.png b/assets/model_diagram.png
new file mode 100644
index 0000000000000000000000000000000000000000..61b8b7c08722f3cf433acaf8001013aa30ce62e9
Binary files /dev/null and b/assets/model_diagram.png differ
diff --git a/assets/sa_v_dataset.jpg b/assets/sa_v_dataset.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..77af3b1a426e9e429b2a28ff7e5d7c13a40adfd0
Binary files /dev/null and b/assets/sa_v_dataset.jpg differ
diff --git a/build/lib.linux-x86_64-cpython-310/sam2/_C.so b/build/lib.linux-x86_64-cpython-310/sam2/_C.so
new file mode 100644
index 0000000000000000000000000000000000000000..7b8bf46fd13a73ec08d690c65258b3a33fe2d0e2
--- /dev/null
+++ b/build/lib.linux-x86_64-cpython-310/sam2/_C.so
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:67c0d5588c99e7a7d44c2325a98877c585934c8a1e8cd35be793a6ee266f235a
+size 1873536
diff --git a/build/temp.linux-x86_64-cpython-310/build.ninja b/build/temp.linux-x86_64-cpython-310/build.ninja
new file mode 100644
index 0000000000000000000000000000000000000000..315ded51fda5f5ff489b3351507db85d5b35d7ff
--- /dev/null
+++ b/build/temp.linux-x86_64-cpython-310/build.ninja
@@ -0,0 +1,32 @@
+ninja_required_version = 1.3
+cxx = /mnt/petrelfs/share/gcc/gcc-10.2.0/bin/c++
+nvcc = /mnt/petrelfs/share/cuda-11.8/bin/nvcc
+
+cflags = -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /mnt/cache/dingshuangrui/anaconda3/envs/sam/include -fPIC -O2 -isystem /mnt/cache/dingshuangrui/anaconda3/envs/sam/include -fPIC -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include/TH -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include/THC -I/mnt/petrelfs/share/cuda-11.8/include -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/include/python3.10 -c
+post_cflags = -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++17
+cuda_cflags = -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include/TH -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include/THC -I/mnt/petrelfs/share/cuda-11.8/include -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/include/python3.10 -c
+cuda_post_cflags = -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -DCUDA_HAS_FP16=1 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 -ccbin /mnt/petrelfs/share/gcc/gcc-10.2.0/bin/gcc -std=c++17
+cuda_dlink_post_cflags = 
+ldflags = 
+
+rule compile
+  command = $cxx -MMD -MF $out.d $cflags -c $in -o $out $post_cflags
+  depfile = $out.d
+  deps = gcc
+
+rule cuda_compile
+  depfile = $out.d
+  deps = gcc
+  command = $nvcc --generate-dependencies-with-compile --dependency-output $out.d $cuda_cflags -c $in -o $out $cuda_post_cflags
+
+
+
+
+
+build /mnt/petrelfs/dingshuangrui/SAM2-Video-Predictor/build/temp.linux-x86_64-cpython-310/sam2/csrc/connected_components.o: cuda_compile /mnt/petrelfs/dingshuangrui/SAM2-Video-Predictor/sam2/csrc/connected_components.cu
+
+
+
+
+
+
diff --git a/build/temp.linux-x86_64-cpython-310/sam2/csrc/connected_components.o b/build/temp.linux-x86_64-cpython-310/sam2/csrc/connected_components.o
new file mode 100644
index 0000000000000000000000000000000000000000..e8be5e81724ad2edf3a45691afa45787323dd68c
--- /dev/null
+++ b/build/temp.linux-x86_64-cpython-310/sam2/csrc/connected_components.o
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7ae64fe80f05eca117159083e8ab58fbdd187d8414578c7a99257fda7a5a123e
+size 2734904
diff --git a/checkpoints/sam2.1_hiera_base_plus.pt b/checkpoints/sam2.1_hiera_base_plus.pt
new file mode 100644
index 0000000000000000000000000000000000000000..1466bad0cd2125f1be02ffdc1cf98718592636b4
--- /dev/null
+++ b/checkpoints/sam2.1_hiera_base_plus.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a2345aede8715ab1d5d31b4a509fb160c5a4af1970f199d9054ccfb746c004c5
+size 323606802
diff --git a/checkpoints/sam2.1_hiera_small.pt b/checkpoints/sam2.1_hiera_small.pt
new file mode 100644
index 0000000000000000000000000000000000000000..eb980035dd665a3f45871f79ee945634915bc31e
--- /dev/null
+++ b/checkpoints/sam2.1_hiera_small.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6d1aa6f30de5c92224f8172114de081d104bbd23dd9dc5c58996f0cad5dc4d38
+size 184416285
diff --git a/checkpoints/sam2.1_hiera_tiny.pt b/checkpoints/sam2.1_hiera_tiny.pt
new file mode 100644
index 0000000000000000000000000000000000000000..56f8d31a0ff55de24d5f30d11ce0cc19a5e5d10b
--- /dev/null
+++ b/checkpoints/sam2.1_hiera_tiny.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7402e0d864fa82708a20fbd15bc84245c2f26dff0eb43a4b5b93452deb34be69
+size 156008466
diff --git a/sam2/_C.so b/sam2/_C.so
new file mode 100644
index 0000000000000000000000000000000000000000..7b8bf46fd13a73ec08d690c65258b3a33fe2d0e2
--- /dev/null
+++ b/sam2/_C.so
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:67c0d5588c99e7a7d44c2325a98877c585934c8a1e8cd35be793a6ee266f235a
+size 1873536
diff --git a/sam2/__init__.py b/sam2/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..0712dd03cb280ab94ba04f8a32aa8ddc8aa3db4a
--- /dev/null
+++ b/sam2/__init__.py
@@ -0,0 +1,11 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from hydra import initialize_config_module
+from hydra.core.global_hydra import GlobalHydra
+
+if not GlobalHydra.instance().is_initialized():
+    initialize_config_module("sam2", version_base="1.2")
diff --git a/sam2/__pycache__/__init__.cpython-310.pyc b/sam2/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f8b054417a62d0bb79ff7b2e0237250aca32f70a
Binary files /dev/null and b/sam2/__pycache__/__init__.cpython-310.pyc differ
diff --git a/sam2/__pycache__/build_sam.cpython-310.pyc b/sam2/__pycache__/build_sam.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5151084c7c66cd1aa115b1e28bb99a551d1749fd
Binary files /dev/null and b/sam2/__pycache__/build_sam.cpython-310.pyc differ
diff --git a/sam2/__pycache__/sam2_image_predictor.cpython-310.pyc b/sam2/__pycache__/sam2_image_predictor.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1696e4abfa6e8f710070c8cca952249528178575
Binary files /dev/null and b/sam2/__pycache__/sam2_image_predictor.cpython-310.pyc differ
diff --git a/sam2/__pycache__/sam2_video_predictor.cpython-310.pyc b/sam2/__pycache__/sam2_video_predictor.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..98064a1f73fd19c762c5f4804a988cf0c2d35957
Binary files /dev/null and b/sam2/__pycache__/sam2_video_predictor.cpython-310.pyc differ
diff --git a/sam2/automatic_mask_generator.py b/sam2/automatic_mask_generator.py
new file mode 100644
index 0000000000000000000000000000000000000000..065e469e27c2d3af40d51d072031e828692c799b
--- /dev/null
+++ b/sam2/automatic_mask_generator.py
@@ -0,0 +1,454 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+# Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py
+from typing import Any, Dict, List, Optional, Tuple
+
+import numpy as np
+import torch
+from torchvision.ops.boxes import batched_nms, box_area  # type: ignore
+
+from sam2.modeling.sam2_base import SAM2Base
+from sam2.sam2_image_predictor import SAM2ImagePredictor
+from sam2.utils.amg import (
+    area_from_rle,
+    batch_iterator,
+    batched_mask_to_box,
+    box_xyxy_to_xywh,
+    build_all_layer_point_grids,
+    calculate_stability_score,
+    coco_encode_rle,
+    generate_crop_boxes,
+    is_box_near_crop_edge,
+    mask_to_rle_pytorch,
+    MaskData,
+    remove_small_regions,
+    rle_to_mask,
+    uncrop_boxes_xyxy,
+    uncrop_masks,
+    uncrop_points,
+)
+
+
+class SAM2AutomaticMaskGenerator:
+    def __init__(
+        self,
+        model: SAM2Base,
+        points_per_side: Optional[int] = 32,
+        points_per_batch: int = 64,
+        pred_iou_thresh: float = 0.8,
+        stability_score_thresh: float = 0.95,
+        stability_score_offset: float = 1.0,
+        mask_threshold: float = 0.0,
+        box_nms_thresh: float = 0.7,
+        crop_n_layers: int = 0,
+        crop_nms_thresh: float = 0.7,
+        crop_overlap_ratio: float = 512 / 1500,
+        crop_n_points_downscale_factor: int = 1,
+        point_grids: Optional[List[np.ndarray]] = None,
+        min_mask_region_area: int = 0,
+        output_mode: str = "binary_mask",
+        use_m2m: bool = False,
+        multimask_output: bool = True,
+        **kwargs,
+    ) -> None:
+        """
+        Using a SAM 2 model, generates masks for the entire image.
+        Generates a grid of point prompts over the image, then filters
+        low quality and duplicate masks. The default settings are chosen
+        for SAM 2 with a HieraL backbone.
+
+        Arguments:
+          model (Sam): The SAM 2 model to use for mask prediction.
+          points_per_side (int or None): The number of points to be sampled
+            along one side of the image. The total number of points is
+            points_per_side**2. If None, 'point_grids' must provide explicit
+            point sampling.
+          points_per_batch (int): Sets the number of points run simultaneously
+            by the model. Higher numbers may be faster but use more GPU memory.
+          pred_iou_thresh (float): A filtering threshold in [0,1], using the
+            model's predicted mask quality.
+          stability_score_thresh (float): A filtering threshold in [0,1], using
+            the stability of the mask under changes to the cutoff used to binarize
+            the model's mask predictions.
+          stability_score_offset (float): The amount to shift the cutoff when
+            calculated the stability score.
+          mask_threshold (float): Threshold for binarizing the mask logits
+          box_nms_thresh (float): The box IoU cutoff used by non-maximal
+            suppression to filter duplicate masks.
+          crop_n_layers (int): If >0, mask prediction will be run again on
+            crops of the image. Sets the number of layers to run, where each
+            layer has 2**i_layer number of image crops.
+          crop_nms_thresh (float): The box IoU cutoff used by non-maximal
+            suppression to filter duplicate masks between different crops.
+          crop_overlap_ratio (float): Sets the degree to which crops overlap.
+            In the first crop layer, crops will overlap by this fraction of
+            the image length. Later layers with more crops scale down this overlap.
+          crop_n_points_downscale_factor (int): The number of points-per-side
+            sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
+          point_grids (list(np.ndarray) or None): A list over explicit grids
+            of points used for sampling, normalized to [0,1]. The nth grid in the
+            list is used in the nth crop layer. Exclusive with points_per_side.
+          min_mask_region_area (int): If >0, postprocessing will be applied
+            to remove disconnected regions and holes in masks with area smaller
+            than min_mask_region_area. Requires opencv.
+          output_mode (str): The form masks are returned in. Can be 'binary_mask',
+            'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
+            For large resolutions, 'binary_mask' may consume large amounts of
+            memory.
+          use_m2m (bool): Whether to add a one step refinement using previous mask predictions.
+          multimask_output (bool): Whether to output multimask at each point of the grid.
+        """
+
+        assert (points_per_side is None) != (
+            point_grids is None
+        ), "Exactly one of points_per_side or point_grid must be provided."
+        if points_per_side is not None:
+            self.point_grids = build_all_layer_point_grids(
+                points_per_side,
+                crop_n_layers,
+                crop_n_points_downscale_factor,
+            )
+        elif point_grids is not None:
+            self.point_grids = point_grids
+        else:
+            raise ValueError("Can't have both points_per_side and point_grid be None.")
+
+        assert output_mode in [
+            "binary_mask",
+            "uncompressed_rle",
+            "coco_rle",
+        ], f"Unknown output_mode {output_mode}."
+        if output_mode == "coco_rle":
+            try:
+                from pycocotools import mask as mask_utils  # type: ignore  # noqa: F401
+            except ImportError as e:
+                print("Please install pycocotools")
+                raise e
+
+        self.predictor = SAM2ImagePredictor(
+            model,
+            max_hole_area=min_mask_region_area,
+            max_sprinkle_area=min_mask_region_area,
+        )
+        self.points_per_batch = points_per_batch
+        self.pred_iou_thresh = pred_iou_thresh
+        self.stability_score_thresh = stability_score_thresh
+        self.stability_score_offset = stability_score_offset
+        self.mask_threshold = mask_threshold
+        self.box_nms_thresh = box_nms_thresh
+        self.crop_n_layers = crop_n_layers
+        self.crop_nms_thresh = crop_nms_thresh
+        self.crop_overlap_ratio = crop_overlap_ratio
+        self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
+        self.min_mask_region_area = min_mask_region_area
+        self.output_mode = output_mode
+        self.use_m2m = use_m2m
+        self.multimask_output = multimask_output
+
+    @classmethod
+    def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2AutomaticMaskGenerator":
+        """
+        Load a pretrained model from the Hugging Face hub.
+
+        Arguments:
+          model_id (str): The Hugging Face repository ID.
+          **kwargs: Additional arguments to pass to the model constructor.
+
+        Returns:
+          (SAM2AutomaticMaskGenerator): The loaded model.
+        """
+        from sam2.build_sam import build_sam2_hf
+
+        sam_model = build_sam2_hf(model_id, **kwargs)
+        return cls(sam_model, **kwargs)
+
+    @torch.no_grad()
+    def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
+        """
+        Generates masks for the given image.
+
+        Arguments:
+          image (np.ndarray): The image to generate masks for, in HWC uint8 format.
+
+        Returns:
+           list(dict(str, any)): A list over records for masks. Each record is
+             a dict containing the following keys:
+               segmentation (dict(str, any) or np.ndarray): The mask. If
+                 output_mode='binary_mask', is an array of shape HW. Otherwise,
+                 is a dictionary containing the RLE.
+               bbox (list(float)): The box around the mask, in XYWH format.
+               area (int): The area in pixels of the mask.
+               predicted_iou (float): The model's own prediction of the mask's
+                 quality. This is filtered by the pred_iou_thresh parameter.
+               point_coords (list(list(float))): The point coordinates input
+                 to the model to generate this mask.
+               stability_score (float): A measure of the mask's quality. This
+                 is filtered on using the stability_score_thresh parameter.
+               crop_box (list(float)): The crop of the image used to generate
+                 the mask, given in XYWH format.
+        """
+
+        # Generate masks
+        mask_data = self._generate_masks(image)
+
+        # Encode masks
+        if self.output_mode == "coco_rle":
+            mask_data["segmentations"] = [
+                coco_encode_rle(rle) for rle in mask_data["rles"]
+            ]
+        elif self.output_mode == "binary_mask":
+            mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
+        else:
+            mask_data["segmentations"] = mask_data["rles"]
+
+        # Write mask records
+        curr_anns = []
+        for idx in range(len(mask_data["segmentations"])):
+            ann = {
+                "segmentation": mask_data["segmentations"][idx],
+                "area": area_from_rle(mask_data["rles"][idx]),
+                "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
+                "predicted_iou": mask_data["iou_preds"][idx].item(),
+                "point_coords": [mask_data["points"][idx].tolist()],
+                "stability_score": mask_data["stability_score"][idx].item(),
+                "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
+            }
+            curr_anns.append(ann)
+
+        return curr_anns
+
+    def _generate_masks(self, image: np.ndarray) -> MaskData:
+        orig_size = image.shape[:2]
+        crop_boxes, layer_idxs = generate_crop_boxes(
+            orig_size, self.crop_n_layers, self.crop_overlap_ratio
+        )
+
+        # Iterate over image crops
+        data = MaskData()
+        for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
+            crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
+            data.cat(crop_data)
+
+        # Remove duplicate masks between crops
+        if len(crop_boxes) > 1:
+            # Prefer masks from smaller crops
+            scores = 1 / box_area(data["crop_boxes"])
+            scores = scores.to(data["boxes"].device)
+            keep_by_nms = batched_nms(
+                data["boxes"].float(),
+                scores,
+                torch.zeros_like(data["boxes"][:, 0]),  # categories
+                iou_threshold=self.crop_nms_thresh,
+            )
+            data.filter(keep_by_nms)
+        data.to_numpy()
+        return data
+
+    def _process_crop(
+        self,
+        image: np.ndarray,
+        crop_box: List[int],
+        crop_layer_idx: int,
+        orig_size: Tuple[int, ...],
+    ) -> MaskData:
+        # Crop the image and calculate embeddings
+        x0, y0, x1, y1 = crop_box
+        cropped_im = image[y0:y1, x0:x1, :]
+        cropped_im_size = cropped_im.shape[:2]
+        self.predictor.set_image(cropped_im)
+
+        # Get points for this crop
+        points_scale = np.array(cropped_im_size)[None, ::-1]
+        points_for_image = self.point_grids[crop_layer_idx] * points_scale
+
+        # Generate masks for this crop in batches
+        data = MaskData()
+        for (points,) in batch_iterator(self.points_per_batch, points_for_image):
+            batch_data = self._process_batch(
+                points, cropped_im_size, crop_box, orig_size, normalize=True
+            )
+            data.cat(batch_data)
+            del batch_data
+        self.predictor.reset_predictor()
+
+        # Remove duplicates within this crop.
+        keep_by_nms = batched_nms(
+            data["boxes"].float(),
+            data["iou_preds"],
+            torch.zeros_like(data["boxes"][:, 0]),  # categories
+            iou_threshold=self.box_nms_thresh,
+        )
+        data.filter(keep_by_nms)
+
+        # Return to the original image frame
+        data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
+        data["points"] = uncrop_points(data["points"], crop_box)
+        data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
+
+        return data
+
+    def _process_batch(
+        self,
+        points: np.ndarray,
+        im_size: Tuple[int, ...],
+        crop_box: List[int],
+        orig_size: Tuple[int, ...],
+        normalize=False,
+    ) -> MaskData:
+        orig_h, orig_w = orig_size
+
+        # Run model on this batch
+        points = torch.as_tensor(
+            points, dtype=torch.float32, device=self.predictor.device
+        )
+        in_points = self.predictor._transforms.transform_coords(
+            points, normalize=normalize, orig_hw=im_size
+        )
+        in_labels = torch.ones(
+            in_points.shape[0], dtype=torch.int, device=in_points.device
+        )
+        masks, iou_preds, low_res_masks = self.predictor._predict(
+            in_points[:, None, :],
+            in_labels[:, None],
+            multimask_output=self.multimask_output,
+            return_logits=True,
+        )
+
+        # Serialize predictions and store in MaskData
+        data = MaskData(
+            masks=masks.flatten(0, 1),
+            iou_preds=iou_preds.flatten(0, 1),
+            points=points.repeat_interleave(masks.shape[1], dim=0),
+            low_res_masks=low_res_masks.flatten(0, 1),
+        )
+        del masks
+
+        if not self.use_m2m:
+            # Filter by predicted IoU
+            if self.pred_iou_thresh > 0.0:
+                keep_mask = data["iou_preds"] > self.pred_iou_thresh
+                data.filter(keep_mask)
+
+            # Calculate and filter by stability score
+            data["stability_score"] = calculate_stability_score(
+                data["masks"], self.mask_threshold, self.stability_score_offset
+            )
+            if self.stability_score_thresh > 0.0:
+                keep_mask = data["stability_score"] >= self.stability_score_thresh
+                data.filter(keep_mask)
+        else:
+            # One step refinement using previous mask predictions
+            in_points = self.predictor._transforms.transform_coords(
+                data["points"], normalize=normalize, orig_hw=im_size
+            )
+            labels = torch.ones(
+                in_points.shape[0], dtype=torch.int, device=in_points.device
+            )
+            masks, ious = self.refine_with_m2m(
+                in_points, labels, data["low_res_masks"], self.points_per_batch
+            )
+            data["masks"] = masks.squeeze(1)
+            data["iou_preds"] = ious.squeeze(1)
+
+            if self.pred_iou_thresh > 0.0:
+                keep_mask = data["iou_preds"] > self.pred_iou_thresh
+                data.filter(keep_mask)
+
+            data["stability_score"] = calculate_stability_score(
+                data["masks"], self.mask_threshold, self.stability_score_offset
+            )
+            if self.stability_score_thresh > 0.0:
+                keep_mask = data["stability_score"] >= self.stability_score_thresh
+                data.filter(keep_mask)
+
+        # Threshold masks and calculate boxes
+        data["masks"] = data["masks"] > self.mask_threshold
+        data["boxes"] = batched_mask_to_box(data["masks"])
+
+        # Filter boxes that touch crop boundaries
+        keep_mask = ~is_box_near_crop_edge(
+            data["boxes"], crop_box, [0, 0, orig_w, orig_h]
+        )
+        if not torch.all(keep_mask):
+            data.filter(keep_mask)
+
+        # Compress to RLE
+        data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
+        data["rles"] = mask_to_rle_pytorch(data["masks"])
+        del data["masks"]
+
+        return data
+
+    @staticmethod
+    def postprocess_small_regions(
+        mask_data: MaskData, min_area: int, nms_thresh: float
+    ) -> MaskData:
+        """
+        Removes small disconnected regions and holes in masks, then reruns
+        box NMS to remove any new duplicates.
+
+        Edits mask_data in place.
+
+        Requires open-cv as a dependency.
+        """
+        if len(mask_data["rles"]) == 0:
+            return mask_data
+
+        # Filter small disconnected regions and holes
+        new_masks = []
+        scores = []
+        for rle in mask_data["rles"]:
+            mask = rle_to_mask(rle)
+
+            mask, changed = remove_small_regions(mask, min_area, mode="holes")
+            unchanged = not changed
+            mask, changed = remove_small_regions(mask, min_area, mode="islands")
+            unchanged = unchanged and not changed
+
+            new_masks.append(torch.as_tensor(mask).unsqueeze(0))
+            # Give score=0 to changed masks and score=1 to unchanged masks
+            # so NMS will prefer ones that didn't need postprocessing
+            scores.append(float(unchanged))
+
+        # Recalculate boxes and remove any new duplicates
+        masks = torch.cat(new_masks, dim=0)
+        boxes = batched_mask_to_box(masks)
+        keep_by_nms = batched_nms(
+            boxes.float(),
+            torch.as_tensor(scores),
+            torch.zeros_like(boxes[:, 0]),  # categories
+            iou_threshold=nms_thresh,
+        )
+
+        # Only recalculate RLEs for masks that have changed
+        for i_mask in keep_by_nms:
+            if scores[i_mask] == 0.0:
+                mask_torch = masks[i_mask].unsqueeze(0)
+                mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
+                mask_data["boxes"][i_mask] = boxes[i_mask]  # update res directly
+        mask_data.filter(keep_by_nms)
+
+        return mask_data
+
+    def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch):
+        new_masks = []
+        new_iou_preds = []
+
+        for cur_points, cur_point_labels, low_res_mask in batch_iterator(
+            points_per_batch, points, point_labels, low_res_masks
+        ):
+            best_masks, best_iou_preds, _ = self.predictor._predict(
+                cur_points[:, None, :],
+                cur_point_labels[:, None],
+                mask_input=low_res_mask[:, None, :],
+                multimask_output=False,
+                return_logits=True,
+            )
+            new_masks.append(best_masks)
+            new_iou_preds.append(best_iou_preds)
+        masks = torch.cat(new_masks, dim=0)
+        return masks, torch.cat(new_iou_preds, dim=0)
diff --git a/sam2/build_sam.py b/sam2/build_sam.py
new file mode 100644
index 0000000000000000000000000000000000000000..7cfc451395792350eabf17bbb466e45e3f4a8d49
--- /dev/null
+++ b/sam2/build_sam.py
@@ -0,0 +1,167 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+import os
+
+import torch
+from hydra import compose
+from hydra.utils import instantiate
+from omegaconf import OmegaConf
+
+import sam2
+
+# Check if the user is running Python from the parent directory of the sam2 repo
+# (i.e. the directory where this repo is cloned into) -- this is not supported since
+# it could shadow the sam2 package and cause issues.
+if os.path.isdir(os.path.join(sam2.__path__[0], "sam2")):
+    # If the user has "sam2/sam2" in their path, they are likey importing the repo itself
+    # as "sam2" rather than importing the "sam2" python package (i.e. "sam2/sam2" directory).
+    # This typically happens because the user is running Python from the parent directory
+    # that contains the sam2 repo they cloned.
+    raise RuntimeError(
+        "You're likely running Python from the parent directory of the sam2 repository "
+        "(i.e. the directory where https://github.com/facebookresearch/sam2 is cloned into). "
+        "This is not supported since the `sam2` Python package could be shadowed by the "
+        "repository name (the repository is also named `sam2` and contains the Python package "
+        "in `sam2/sam2`). Please run Python from another directory (e.g. from the repo dir "
+        "rather than its parent dir, or from your home directory) after installing SAM 2."
+    )
+
+
+HF_MODEL_ID_TO_FILENAMES = {
+    "facebook/sam2-hiera-tiny": (
+        "configs/sam2/sam2_hiera_t.yaml",
+        "sam2_hiera_tiny.pt",
+    ),
+    "facebook/sam2-hiera-small": (
+        "configs/sam2/sam2_hiera_s.yaml",
+        "sam2_hiera_small.pt",
+    ),
+    "facebook/sam2-hiera-base-plus": (
+        "configs/sam2/sam2_hiera_b+.yaml",
+        "sam2_hiera_base_plus.pt",
+    ),
+    "facebook/sam2-hiera-large": (
+        "configs/sam2/sam2_hiera_l.yaml",
+        "sam2_hiera_large.pt",
+    ),
+    "facebook/sam2.1-hiera-tiny": (
+        "configs/sam2.1/sam2.1_hiera_t.yaml",
+        "sam2.1_hiera_tiny.pt",
+    ),
+    "facebook/sam2.1-hiera-small": (
+        "configs/sam2.1/sam2.1_hiera_s.yaml",
+        "sam2.1_hiera_small.pt",
+    ),
+    "facebook/sam2.1-hiera-base-plus": (
+        "configs/sam2.1/sam2.1_hiera_b+.yaml",
+        "sam2.1_hiera_base_plus.pt",
+    ),
+    "facebook/sam2.1-hiera-large": (
+        "configs/sam2.1/sam2.1_hiera_l.yaml",
+        "sam2.1_hiera_large.pt",
+    ),
+}
+
+
+def build_sam2(
+    config_file,
+    ckpt_path=None,
+    device="cuda",
+    mode="eval",
+    hydra_overrides_extra=[],
+    apply_postprocessing=True,
+    **kwargs,
+):
+
+    if apply_postprocessing:
+        hydra_overrides_extra = hydra_overrides_extra.copy()
+        hydra_overrides_extra += [
+            # dynamically fall back to multi-mask if the single mask is not stable
+            "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
+            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
+            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
+        ]
+    # Read config and init model
+    cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
+    OmegaConf.resolve(cfg)
+    model = instantiate(cfg.model, _recursive_=True)
+    _load_checkpoint(model, ckpt_path)
+    model = model.to(device)
+    if mode == "eval":
+        model.eval()
+    return model
+
+
+def build_sam2_video_predictor(
+    config_file,
+    ckpt_path=None,
+    device="cuda",
+    mode="eval",
+    hydra_overrides_extra=[],
+    apply_postprocessing=True,
+    **kwargs,
+):
+    hydra_overrides = [
+        "++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
+    ]
+    if apply_postprocessing:
+        hydra_overrides_extra = hydra_overrides_extra.copy()
+        hydra_overrides_extra += [
+            # dynamically fall back to multi-mask if the single mask is not stable
+            "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
+            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
+            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
+            # the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
+            "++model.binarize_mask_from_pts_for_mem_enc=true",
+            # fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
+            "++model.fill_hole_area=8",
+        ]
+    hydra_overrides.extend(hydra_overrides_extra)
+
+    # Read config and init model
+    cfg = compose(config_name=config_file, overrides=hydra_overrides)
+    OmegaConf.resolve(cfg)
+    model = instantiate(cfg.model, _recursive_=True)
+    _load_checkpoint(model, ckpt_path)
+    model = model.to(device)
+    if mode == "eval":
+        model.eval()
+    return model
+
+
+def _hf_download(model_id):
+    from huggingface_hub import hf_hub_download
+
+    config_name, checkpoint_name = HF_MODEL_ID_TO_FILENAMES[model_id]
+    ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
+    return config_name, ckpt_path
+
+
+def build_sam2_hf(model_id, **kwargs):
+    config_name, ckpt_path = _hf_download(model_id)
+    return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
+
+
+def build_sam2_video_predictor_hf(model_id, **kwargs):
+    config_name, ckpt_path = _hf_download(model_id)
+    return build_sam2_video_predictor(
+        config_file=config_name, ckpt_path=ckpt_path, **kwargs
+    )
+
+
+def _load_checkpoint(model, ckpt_path):
+    if ckpt_path is not None:
+        sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"]
+        missing_keys, unexpected_keys = model.load_state_dict(sd)
+        if missing_keys:
+            logging.error(missing_keys)
+            raise RuntimeError()
+        if unexpected_keys:
+            logging.error(unexpected_keys)
+            raise RuntimeError()
+        logging.info("Loaded checkpoint sucessfully")
diff --git a/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml b/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..cbee3cf9b3977ebe4cc868797a9bfa9e348cb3a3
--- /dev/null
+++ b/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml
@@ -0,0 +1,116 @@
+# @package _global_
+
+# Model
+model:
+  _target_: sam2.modeling.sam2_base.SAM2Base
+  image_encoder:
+    _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
+    scalp: 1
+    trunk:
+      _target_: sam2.modeling.backbones.hieradet.Hiera
+      embed_dim: 112
+      num_heads: 2
+    neck:
+      _target_: sam2.modeling.backbones.image_encoder.FpnNeck
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 256
+        normalize: true
+        scale: null
+        temperature: 10000
+      d_model: 256
+      backbone_channel_list: [896, 448, 224, 112]
+      fpn_top_down_levels: [2, 3]  # output level 0 and 1 directly use the backbone features
+      fpn_interp_model: nearest
+
+  memory_attention:
+    _target_: sam2.modeling.memory_attention.MemoryAttention
+    d_model: 256
+    pos_enc_at_input: true
+    layer:
+      _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
+      activation: relu
+      dim_feedforward: 2048
+      dropout: 0.1
+      pos_enc_at_attn: false
+      self_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+      d_model: 256
+      pos_enc_at_cross_attn_keys: true
+      pos_enc_at_cross_attn_queries: false
+      cross_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        rope_k_repeat: True
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+        kv_in_dim: 64
+    num_layers: 4
+
+  memory_encoder:
+      _target_: sam2.modeling.memory_encoder.MemoryEncoder
+      out_dim: 64
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 64
+        normalize: true
+        scale: null
+        temperature: 10000
+      mask_downsampler:
+        _target_: sam2.modeling.memory_encoder.MaskDownSampler
+        kernel_size: 3
+        stride: 2
+        padding: 1
+      fuser:
+        _target_: sam2.modeling.memory_encoder.Fuser
+        layer:
+          _target_: sam2.modeling.memory_encoder.CXBlock
+          dim: 256
+          kernel_size: 7
+          padding: 3
+          layer_scale_init_value: 1e-6
+          use_dwconv: True  # depth-wise convs
+        num_layers: 2
+
+  num_maskmem: 7
+  image_size: 1024
+  # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
+  sigmoid_scale_for_mem_enc: 20.0
+  sigmoid_bias_for_mem_enc: -10.0
+  use_mask_input_as_output_without_sam: true
+  # Memory
+  directly_add_no_mem_embed: true
+  no_obj_embed_spatial: true
+  # use high-resolution feature map in the SAM mask decoder
+  use_high_res_features_in_sam: true
+  # output 3 masks on the first click on initial conditioning frames
+  multimask_output_in_sam: true
+  # SAM heads
+  iou_prediction_use_sigmoid: True
+  # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+  use_obj_ptrs_in_encoder: true
+  add_tpos_enc_to_obj_ptrs: true
+  proj_tpos_enc_in_obj_ptrs: true
+  use_signed_tpos_enc_to_obj_ptrs: true
+  only_obj_ptrs_in_the_past_for_eval: true
+  # object occlusion prediction
+  pred_obj_scores: true
+  pred_obj_scores_mlp: true
+  fixed_no_obj_ptr: true
+  # multimask tracking settings
+  multimask_output_for_tracking: true
+  use_multimask_token_for_obj_ptr: true
+  multimask_min_pt_num: 0
+  multimask_max_pt_num: 1
+  use_mlp_for_obj_ptr_proj: true
+  # Compilation flag
+  compile_image_encoder: False
diff --git a/sam2/configs/sam2.1/sam2.1_hiera_l.yaml b/sam2/configs/sam2.1/sam2.1_hiera_l.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..33c9097f34ea90beae52776eb88ad8eb1632ab66
--- /dev/null
+++ b/sam2/configs/sam2.1/sam2.1_hiera_l.yaml
@@ -0,0 +1,120 @@
+# @package _global_
+
+# Model
+model:
+  _target_: sam2.modeling.sam2_base.SAM2Base
+  image_encoder:
+    _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
+    scalp: 1
+    trunk:
+      _target_: sam2.modeling.backbones.hieradet.Hiera
+      embed_dim: 144
+      num_heads: 2
+      stages: [2, 6, 36, 4]
+      global_att_blocks: [23, 33, 43]
+      window_pos_embed_bkg_spatial_size: [7, 7]
+      window_spec: [8, 4, 16, 8]
+    neck:
+      _target_: sam2.modeling.backbones.image_encoder.FpnNeck
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 256
+        normalize: true
+        scale: null
+        temperature: 10000
+      d_model: 256
+      backbone_channel_list: [1152, 576, 288, 144]
+      fpn_top_down_levels: [2, 3]  # output level 0 and 1 directly use the backbone features
+      fpn_interp_model: nearest
+
+  memory_attention:
+    _target_: sam2.modeling.memory_attention.MemoryAttention
+    d_model: 256
+    pos_enc_at_input: true
+    layer:
+      _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
+      activation: relu
+      dim_feedforward: 2048
+      dropout: 0.1
+      pos_enc_at_attn: false
+      self_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+      d_model: 256
+      pos_enc_at_cross_attn_keys: true
+      pos_enc_at_cross_attn_queries: false
+      cross_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        rope_k_repeat: True
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+        kv_in_dim: 64
+    num_layers: 4
+
+  memory_encoder:
+      _target_: sam2.modeling.memory_encoder.MemoryEncoder
+      out_dim: 64
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 64
+        normalize: true
+        scale: null
+        temperature: 10000
+      mask_downsampler:
+        _target_: sam2.modeling.memory_encoder.MaskDownSampler
+        kernel_size: 3
+        stride: 2
+        padding: 1
+      fuser:
+        _target_: sam2.modeling.memory_encoder.Fuser
+        layer:
+          _target_: sam2.modeling.memory_encoder.CXBlock
+          dim: 256
+          kernel_size: 7
+          padding: 3
+          layer_scale_init_value: 1e-6
+          use_dwconv: True  # depth-wise convs
+        num_layers: 2
+
+  num_maskmem: 7
+  image_size: 1024
+  # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
+  sigmoid_scale_for_mem_enc: 20.0
+  sigmoid_bias_for_mem_enc: -10.0
+  use_mask_input_as_output_without_sam: true
+  # Memory
+  directly_add_no_mem_embed: true
+  no_obj_embed_spatial: true
+  # use high-resolution feature map in the SAM mask decoder
+  use_high_res_features_in_sam: true
+  # output 3 masks on the first click on initial conditioning frames
+  multimask_output_in_sam: true
+  # SAM heads
+  iou_prediction_use_sigmoid: True
+  # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+  use_obj_ptrs_in_encoder: true
+  add_tpos_enc_to_obj_ptrs: true
+  proj_tpos_enc_in_obj_ptrs: true
+  use_signed_tpos_enc_to_obj_ptrs: true
+  only_obj_ptrs_in_the_past_for_eval: true
+  # object occlusion prediction
+  pred_obj_scores: true
+  pred_obj_scores_mlp: true
+  fixed_no_obj_ptr: true
+  # multimask tracking settings
+  multimask_output_for_tracking: true
+  use_multimask_token_for_obj_ptr: true
+  multimask_min_pt_num: 0
+  multimask_max_pt_num: 1
+  use_mlp_for_obj_ptr_proj: true
+  # Compilation flag
+  compile_image_encoder: False
diff --git a/sam2/configs/sam2.1/sam2.1_hiera_s.yaml b/sam2/configs/sam2.1/sam2.1_hiera_s.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..8e803dfea5904f5eb5e73981918c913197587728
--- /dev/null
+++ b/sam2/configs/sam2.1/sam2.1_hiera_s.yaml
@@ -0,0 +1,119 @@
+# @package _global_
+
+# Model
+model:
+  _target_: sam2.modeling.sam2_base.SAM2Base
+  image_encoder:
+    _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
+    scalp: 1
+    trunk:
+      _target_: sam2.modeling.backbones.hieradet.Hiera
+      embed_dim: 96
+      num_heads: 1
+      stages: [1, 2, 11, 2]
+      global_att_blocks: [7, 10, 13]
+      window_pos_embed_bkg_spatial_size: [7, 7]
+    neck:
+      _target_: sam2.modeling.backbones.image_encoder.FpnNeck
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 256
+        normalize: true
+        scale: null
+        temperature: 10000
+      d_model: 256
+      backbone_channel_list: [768, 384, 192, 96]
+      fpn_top_down_levels: [2, 3]  # output level 0 and 1 directly use the backbone features
+      fpn_interp_model: nearest
+
+  memory_attention:
+    _target_: sam2.modeling.memory_attention.MemoryAttention
+    d_model: 256
+    pos_enc_at_input: true
+    layer:
+      _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
+      activation: relu
+      dim_feedforward: 2048
+      dropout: 0.1
+      pos_enc_at_attn: false
+      self_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+      d_model: 256
+      pos_enc_at_cross_attn_keys: true
+      pos_enc_at_cross_attn_queries: false
+      cross_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        rope_k_repeat: True
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+        kv_in_dim: 64
+    num_layers: 4
+
+  memory_encoder:
+      _target_: sam2.modeling.memory_encoder.MemoryEncoder
+      out_dim: 64
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 64
+        normalize: true
+        scale: null
+        temperature: 10000
+      mask_downsampler:
+        _target_: sam2.modeling.memory_encoder.MaskDownSampler
+        kernel_size: 3
+        stride: 2
+        padding: 1
+      fuser:
+        _target_: sam2.modeling.memory_encoder.Fuser
+        layer:
+          _target_: sam2.modeling.memory_encoder.CXBlock
+          dim: 256
+          kernel_size: 7
+          padding: 3
+          layer_scale_init_value: 1e-6
+          use_dwconv: True  # depth-wise convs
+        num_layers: 2
+
+  num_maskmem: 7
+  image_size: 1024
+  # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
+  sigmoid_scale_for_mem_enc: 20.0
+  sigmoid_bias_for_mem_enc: -10.0
+  use_mask_input_as_output_without_sam: true
+  # Memory
+  directly_add_no_mem_embed: true
+  no_obj_embed_spatial: true
+  # use high-resolution feature map in the SAM mask decoder
+  use_high_res_features_in_sam: true
+  # output 3 masks on the first click on initial conditioning frames
+  multimask_output_in_sam: true
+  # SAM heads
+  iou_prediction_use_sigmoid: True
+  # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+  use_obj_ptrs_in_encoder: true
+  add_tpos_enc_to_obj_ptrs: true
+  proj_tpos_enc_in_obj_ptrs: true
+  use_signed_tpos_enc_to_obj_ptrs: true
+  only_obj_ptrs_in_the_past_for_eval: true
+  # object occlusion prediction
+  pred_obj_scores: true
+  pred_obj_scores_mlp: true
+  fixed_no_obj_ptr: true
+  # multimask tracking settings
+  multimask_output_for_tracking: true
+  use_multimask_token_for_obj_ptr: true
+  multimask_min_pt_num: 0
+  multimask_max_pt_num: 1
+  use_mlp_for_obj_ptr_proj: true
+  # Compilation flag
+  compile_image_encoder: False
diff --git a/sam2/configs/sam2.1/sam2.1_hiera_t.yaml b/sam2/configs/sam2.1/sam2.1_hiera_t.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..983c2ea031b7a17db439fe89fa8b7bd426ecd9bb
--- /dev/null
+++ b/sam2/configs/sam2.1/sam2.1_hiera_t.yaml
@@ -0,0 +1,121 @@
+# @package _global_
+
+# Model
+model:
+  _target_: sam2.modeling.sam2_base.SAM2Base
+  image_encoder:
+    _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
+    scalp: 1
+    trunk:
+      _target_: sam2.modeling.backbones.hieradet.Hiera
+      embed_dim: 96
+      num_heads: 1
+      stages: [1, 2, 7, 2]
+      global_att_blocks: [5, 7, 9]
+      window_pos_embed_bkg_spatial_size: [7, 7]
+    neck:
+      _target_: sam2.modeling.backbones.image_encoder.FpnNeck
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 256
+        normalize: true
+        scale: null
+        temperature: 10000
+      d_model: 256
+      backbone_channel_list: [768, 384, 192, 96]
+      fpn_top_down_levels: [2, 3]  # output level 0 and 1 directly use the backbone features
+      fpn_interp_model: nearest
+
+  memory_attention:
+    _target_: sam2.modeling.memory_attention.MemoryAttention
+    d_model: 256
+    pos_enc_at_input: true
+    layer:
+      _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
+      activation: relu
+      dim_feedforward: 2048
+      dropout: 0.1
+      pos_enc_at_attn: false
+      self_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+      d_model: 256
+      pos_enc_at_cross_attn_keys: true
+      pos_enc_at_cross_attn_queries: false
+      cross_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        rope_k_repeat: True
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+        kv_in_dim: 64
+    num_layers: 4
+
+  memory_encoder:
+      _target_: sam2.modeling.memory_encoder.MemoryEncoder
+      out_dim: 64
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 64
+        normalize: true
+        scale: null
+        temperature: 10000
+      mask_downsampler:
+        _target_: sam2.modeling.memory_encoder.MaskDownSampler
+        kernel_size: 3
+        stride: 2
+        padding: 1
+      fuser:
+        _target_: sam2.modeling.memory_encoder.Fuser
+        layer:
+          _target_: sam2.modeling.memory_encoder.CXBlock
+          dim: 256
+          kernel_size: 7
+          padding: 3
+          layer_scale_init_value: 1e-6
+          use_dwconv: True  # depth-wise convs
+        num_layers: 2
+
+  num_maskmem: 7
+  image_size: 1024
+  # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
+  # SAM decoder
+  sigmoid_scale_for_mem_enc: 20.0
+  sigmoid_bias_for_mem_enc: -10.0
+  use_mask_input_as_output_without_sam: true
+  # Memory
+  directly_add_no_mem_embed: true
+  no_obj_embed_spatial: true
+  # use high-resolution feature map in the SAM mask decoder
+  use_high_res_features_in_sam: true
+  # output 3 masks on the first click on initial conditioning frames
+  multimask_output_in_sam: true
+  # SAM heads
+  iou_prediction_use_sigmoid: True
+  # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+  use_obj_ptrs_in_encoder: true
+  add_tpos_enc_to_obj_ptrs: true
+  proj_tpos_enc_in_obj_ptrs: true
+  use_signed_tpos_enc_to_obj_ptrs: true
+  only_obj_ptrs_in_the_past_for_eval: true
+  # object occlusion prediction
+  pred_obj_scores: true
+  pred_obj_scores_mlp: true
+  fixed_no_obj_ptr: true
+  # multimask tracking settings
+  multimask_output_for_tracking: true
+  use_multimask_token_for_obj_ptr: true
+  multimask_min_pt_num: 0
+  multimask_max_pt_num: 1
+  use_mlp_for_obj_ptr_proj: true
+  # Compilation flag
+  # HieraT does not currently support compilation, should always be set to False
+  compile_image_encoder: False
diff --git a/sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml b/sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..1928c4b9a31a99ddc8b780e29e8a1f58a0df463a
--- /dev/null
+++ b/sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml
@@ -0,0 +1,339 @@
+# @package _global_
+
+scratch:
+  resolution: 1024
+  train_batch_size: 1
+  num_train_workers: 10
+  num_frames: 8
+  max_num_objects: 3
+  base_lr: 5.0e-6
+  vision_lr: 3.0e-06
+  phases_per_epoch: 1
+  num_epochs: 40
+
+dataset:
+  # PATHS to Dataset
+  img_folder: /fsx-onevision/shared/data/academic_vos_data/MOSE/train/JPEGImages # PATH to MOSE JPEGImages folder
+  gt_folder: /fsx-onevision/shared/data/academic_vos_data/MOSE/train/Annotations/  # PATH to MOSE Annotations folder
+  file_list_txt: training/assets/MOSE_sample_train_list.txt # Optional PATH to filelist containing a subset of videos to be used for training
+  multiplier: 2
+
+# Video transforms
+vos:
+  train_transforms:
+    - _target_: training.dataset.transforms.ComposeAPI
+      transforms:
+        - _target_: training.dataset.transforms.RandomHorizontalFlip
+          consistent_transform: True
+        - _target_: training.dataset.transforms.RandomAffine
+          degrees: 25
+          shear: 20
+          image_interpolation: bilinear
+          consistent_transform: True
+        - _target_: training.dataset.transforms.RandomResizeAPI
+          sizes: ${scratch.resolution}
+          square: true
+          consistent_transform: True
+        - _target_: training.dataset.transforms.ColorJitter
+          consistent_transform: True
+          brightness: 0.1
+          contrast: 0.03
+          saturation: 0.03
+          hue: null
+        - _target_: training.dataset.transforms.RandomGrayscale
+          p: 0.05
+          consistent_transform: True
+        - _target_: training.dataset.transforms.ColorJitter
+          consistent_transform: False
+          brightness: 0.1
+          contrast: 0.05
+          saturation: 0.05
+          hue: null
+        - _target_: training.dataset.transforms.ToTensorAPI
+        - _target_: training.dataset.transforms.NormalizeAPI
+          mean: [0.485, 0.456, 0.406]
+          std: [0.229, 0.224, 0.225]
+
+trainer:
+  _target_: training.trainer.Trainer
+  mode: train_only
+  max_epochs: ${times:${scratch.num_epochs},${scratch.phases_per_epoch}}
+  accelerator: cuda
+  seed_value: 123
+
+  model:
+    _target_: training.model.sam2.SAM2Train
+    image_encoder:
+      _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
+      scalp: 1
+      trunk:
+        _target_: sam2.modeling.backbones.hieradet.Hiera
+        embed_dim: 112
+        num_heads: 2
+        drop_path_rate: 0.1
+      neck:
+        _target_: sam2.modeling.backbones.image_encoder.FpnNeck
+        position_encoding:
+          _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+          num_pos_feats: 256
+          normalize: true
+          scale: null
+          temperature: 10000
+        d_model: 256
+        backbone_channel_list: [896, 448, 224, 112]
+        fpn_top_down_levels: [2, 3]  # output level 0 and 1 directly use the backbone features
+        fpn_interp_model: nearest
+
+    memory_attention:
+      _target_: sam2.modeling.memory_attention.MemoryAttention
+      d_model: 256
+      pos_enc_at_input: true
+      layer:
+        _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
+        activation: relu
+        dim_feedforward: 2048
+        dropout: 0.1
+        pos_enc_at_attn: false
+        self_attention:
+          _target_: sam2.modeling.sam.transformer.RoPEAttention
+          rope_theta: 10000.0
+          feat_sizes: [32, 32]
+          embedding_dim: 256
+          num_heads: 1
+          downsample_rate: 1
+          dropout: 0.1
+        d_model: 256
+        pos_enc_at_cross_attn_keys: true
+        pos_enc_at_cross_attn_queries: false
+        cross_attention:
+          _target_: sam2.modeling.sam.transformer.RoPEAttention
+          rope_theta: 10000.0
+          feat_sizes: [32, 32]
+          rope_k_repeat: True
+          embedding_dim: 256
+          num_heads: 1
+          downsample_rate: 1
+          dropout: 0.1
+          kv_in_dim: 64
+      num_layers: 4
+
+    memory_encoder:
+        _target_: sam2.modeling.memory_encoder.MemoryEncoder
+        out_dim: 64
+        position_encoding:
+          _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+          num_pos_feats: 64
+          normalize: true
+          scale: null
+          temperature: 10000
+        mask_downsampler:
+          _target_: sam2.modeling.memory_encoder.MaskDownSampler
+          kernel_size: 3
+          stride: 2
+          padding: 1
+        fuser:
+          _target_: sam2.modeling.memory_encoder.Fuser
+          layer:
+            _target_: sam2.modeling.memory_encoder.CXBlock
+            dim: 256
+            kernel_size: 7
+            padding: 3
+            layer_scale_init_value: 1e-6
+            use_dwconv: True  # depth-wise convs
+          num_layers: 2
+
+    num_maskmem: 7
+    image_size: ${scratch.resolution}
+    # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
+    sigmoid_scale_for_mem_enc: 20.0
+    sigmoid_bias_for_mem_enc: -10.0
+    use_mask_input_as_output_without_sam: true
+    # Memory
+    directly_add_no_mem_embed: true
+    no_obj_embed_spatial: true
+    # use high-resolution feature map in the SAM mask decoder
+    use_high_res_features_in_sam: true
+    # output 3 masks on the first click on initial conditioning frames
+    multimask_output_in_sam: true
+    # SAM heads
+    iou_prediction_use_sigmoid: True
+    # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+    use_obj_ptrs_in_encoder: true
+    add_tpos_enc_to_obj_ptrs: true
+    proj_tpos_enc_in_obj_ptrs: true
+    use_signed_tpos_enc_to_obj_ptrs: true
+    only_obj_ptrs_in_the_past_for_eval: true
+    # object occlusion prediction
+    pred_obj_scores: true
+    pred_obj_scores_mlp: true
+    fixed_no_obj_ptr: true
+    # multimask tracking settings
+    multimask_output_for_tracking: true
+    use_multimask_token_for_obj_ptr: true
+    multimask_min_pt_num: 0
+    multimask_max_pt_num: 1
+    use_mlp_for_obj_ptr_proj: true
+    # Compilation flag
+    # compile_image_encoder: False
+
+    ####### Training specific params #######
+    # box/point input and corrections
+    prob_to_use_pt_input_for_train: 0.5
+    prob_to_use_pt_input_for_eval: 0.0
+    prob_to_use_box_input_for_train: 0.5  # 0.5*0.5 = 0.25 prob to use box instead of points
+    prob_to_use_box_input_for_eval: 0.0
+    prob_to_sample_from_gt_for_train: 0.1  # with a small prob, sampling correction points from GT mask instead of prediction errors
+    num_frames_to_correct_for_train: 2  # iteratively sample on random 1~2 frames (always include the first frame)
+    num_frames_to_correct_for_eval: 1  # only iteratively sample on first frame
+    rand_frames_to_correct_for_train: True  # random #init-cond-frame ~ 2
+    add_all_frames_to_correct_as_cond: True  # when a frame receives a correction click, it becomes a conditioning frame (even if it's not initially a conditioning frame)
+    # maximum 2 initial conditioning frames
+    num_init_cond_frames_for_train: 2
+    rand_init_cond_frames_for_train: True  # random 1~2
+    num_correction_pt_per_frame: 7
+    use_act_ckpt_iterative_pt_sampling: false
+    
+
+    
+    num_init_cond_frames_for_eval: 1  # only mask on the first frame
+    forward_backbone_per_frame_for_eval: True
+    
+
+  data:
+    train:
+      _target_: training.dataset.sam2_datasets.TorchTrainMixedDataset
+      phases_per_epoch: ${scratch.phases_per_epoch}
+      batch_sizes:
+        - ${scratch.train_batch_size}
+
+      datasets:
+        - _target_: training.dataset.utils.RepeatFactorWrapper
+          dataset:
+            _target_: training.dataset.utils.ConcatDataset
+            datasets:
+            - _target_: training.dataset.vos_dataset.VOSDataset
+              transforms: ${vos.train_transforms}
+              training: true
+              video_dataset:
+                _target_: training.dataset.vos_raw_dataset.PNGRawDataset
+                img_folder: ${dataset.img_folder}
+                gt_folder: ${dataset.gt_folder}
+                file_list_txt: ${dataset.file_list_txt}
+              sampler:
+                _target_: training.dataset.vos_sampler.RandomUniformSampler
+                num_frames: ${scratch.num_frames}
+                max_num_objects: ${scratch.max_num_objects}
+              multiplier: ${dataset.multiplier}
+      shuffle: True
+      num_workers: ${scratch.num_train_workers}
+      pin_memory: True
+      drop_last: True
+      collate_fn:
+        _target_: training.utils.data_utils.collate_fn
+        _partial_: true
+        dict_key: all
+
+  optim:
+    amp:
+      enabled: True
+      amp_dtype: bfloat16
+
+    optimizer:
+      _target_: torch.optim.AdamW
+
+    gradient_clip:
+      _target_: training.optimizer.GradientClipper
+      max_norm: 0.1
+      norm_type: 2
+
+    param_group_modifiers:
+      - _target_: training.optimizer.layer_decay_param_modifier
+        _partial_: True
+        layer_decay_value: 0.9
+        apply_to: 'image_encoder.trunk'
+        overrides:
+          - pattern: '*pos_embed*'
+            value: 1.0
+
+    options:
+      lr:
+        - scheduler:
+            _target_: fvcore.common.param_scheduler.CosineParamScheduler
+            start_value: ${scratch.base_lr}
+            end_value: ${divide:${scratch.base_lr},10}
+        - scheduler:
+            _target_: fvcore.common.param_scheduler.CosineParamScheduler
+            start_value: ${scratch.vision_lr}
+            end_value: ${divide:${scratch.vision_lr},10}
+          param_names:
+            - 'image_encoder.*'
+      weight_decay:
+        - scheduler:
+            _target_: fvcore.common.param_scheduler.ConstantParamScheduler
+            value: 0.1
+        - scheduler:
+            _target_: fvcore.common.param_scheduler.ConstantParamScheduler
+            value: 0.0
+          param_names:
+            - '*bias*'
+          module_cls_names: ['torch.nn.LayerNorm']
+
+  loss:
+    all:
+      _target_: training.loss_fns.MultiStepMultiMasksAndIous
+      weight_dict:
+        loss_mask: 20
+        loss_dice: 1
+        loss_iou: 1
+        loss_class: 1
+      supervise_all_iou: true
+      iou_use_l1_loss: true
+      pred_obj_scores: true
+      focal_gamma_obj_score: 0.0
+      focal_alpha_obj_score: -1.0
+
+  distributed:
+    backend: nccl
+    find_unused_parameters: True
+
+  logging:
+    tensorboard_writer:
+      _target_: training.utils.logger.make_tensorboard_logger
+      log_dir:  ${launcher.experiment_log_dir}/tensorboard
+      flush_secs: 120
+      should_log: True
+    log_dir: ${launcher.experiment_log_dir}/logs
+    log_freq: 10
+
+  # initialize from a SAM 2 checkpoint
+  checkpoint:
+    save_dir: ${launcher.experiment_log_dir}/checkpoints
+    save_freq: 0 # 0 only last checkpoint is saved.
+    model_weight_initializer:
+      _partial_: True
+      _target_: training.utils.checkpoint_utils.load_state_dict_into_model
+      strict: True
+      ignore_unexpected_keys: null
+      ignore_missing_keys: null
+
+      state_dict:
+        _target_: training.utils.checkpoint_utils.load_checkpoint_and_apply_kernels
+        checkpoint_path: ./checkpoints/sam2.1_hiera_base_plus.pt # PATH to SAM 2.1 checkpoint
+        ckpt_state_dict_keys: ['model']
+
+launcher:
+  num_nodes: 1
+  gpus_per_node: 8
+  experiment_log_dir: null # Path to log directory, defaults to ./sam2_logs/${config_name}
+
+# SLURM args if running on a cluster
+submitit:
+  partition: null
+  account: null
+  qos: null
+  cpus_per_task: 10
+  use_cluster: false
+  timeout_hour: 24
+  name: null
+  port_range: [10000, 65000]
+
diff --git a/sam2/csrc/connected_components.cu b/sam2/csrc/connected_components.cu
new file mode 100644
index 0000000000000000000000000000000000000000..ced21eb32eaaadb818d441c1322b99d1bf068f45
--- /dev/null
+++ b/sam2/csrc/connected_components.cu
@@ -0,0 +1,289 @@
+// Copyright (c) Meta Platforms, Inc. and affiliates.
+// All rights reserved.
+
+// This source code is licensed under the license found in the
+// LICENSE file in the root directory of this source tree.
+
+// adapted from https://github.com/zsef123/Connected_components_PyTorch
+// with license found in the LICENSE_cctorch file in the root directory.
+#include <ATen/cuda/CUDAContext.h>
+#include <cuda.h>
+#include <cuda_runtime.h>
+#include <torch/extension.h>
+#include <torch/script.h>
+#include <vector>
+
+// 2d
+#define BLOCK_ROWS 16
+#define BLOCK_COLS 16
+
+namespace cc2d {
+
+template <typename T>
+__device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) {
+  return (bitmap >> pos) & 1;
+}
+
+__device__ int32_t find(const int32_t* s_buf, int32_t n) {
+  while (s_buf[n] != n)
+    n = s_buf[n];
+  return n;
+}
+
+__device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) {
+  const int32_t id = n;
+  while (s_buf[n] != n) {
+    n = s_buf[n];
+    s_buf[id] = n;
+  }
+  return n;
+}
+
+__device__ void union_(int32_t* s_buf, int32_t a, int32_t b) {
+  bool done;
+  do {
+    a = find(s_buf, a);
+    b = find(s_buf, b);
+
+    if (a < b) {
+      int32_t old = atomicMin(s_buf + b, a);
+      done = (old == b);
+      b = old;
+    } else if (b < a) {
+      int32_t old = atomicMin(s_buf + a, b);
+      done = (old == a);
+      a = old;
+    } else
+      done = true;
+
+  } while (!done);
+}
+
+__global__ void
+init_labeling(int32_t* label, const uint32_t W, const uint32_t H) {
+  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
+  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
+  const uint32_t idx = row * W + col;
+
+  if (row < H && col < W)
+    label[idx] = idx;
+}
+
+__global__ void
+merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) {
+  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
+  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
+  const uint32_t idx = row * W + col;
+
+  if (row >= H || col >= W)
+    return;
+
+  uint32_t P = 0;
+
+  if (img[idx])
+    P |= 0x777;
+  if (row + 1 < H && img[idx + W])
+    P |= 0x777 << 4;
+  if (col + 1 < W && img[idx + 1])
+    P |= 0x777 << 1;
+
+  if (col == 0)
+    P &= 0xEEEE;
+  if (col + 1 >= W)
+    P &= 0x3333;
+  else if (col + 2 >= W)
+    P &= 0x7777;
+
+  if (row == 0)
+    P &= 0xFFF0;
+  if (row + 1 >= H)
+    P &= 0xFF;
+
+  if (P > 0) {
+    // If need check about top-left pixel(if flag the first bit) and hit the
+    // top-left pixel
+    if (hasBit(P, 0) && img[idx - W - 1]) {
+      union_(label, idx, idx - 2 * W - 2); // top left block
+    }
+
+    if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1]))
+      union_(label, idx, idx - 2 * W); // top bottom block
+
+    if (hasBit(P, 3) && img[idx + 2 - W])
+      union_(label, idx, idx - 2 * W + 2); // top right block
+
+    if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1]))
+      union_(label, idx, idx - 2); // just left block
+  }
+}
+
+__global__ void compression(int32_t* label, const int32_t W, const int32_t H) {
+  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
+  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
+  const uint32_t idx = row * W + col;
+
+  if (row < H && col < W)
+    find_n_compress(label, idx);
+}
+
+__global__ void final_labeling(
+    const uint8_t* img,
+    int32_t* label,
+    const int32_t W,
+    const int32_t H) {
+  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
+  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
+  const uint32_t idx = row * W + col;
+
+  if (row >= H || col >= W)
+    return;
+
+  int32_t y = label[idx] + 1;
+
+  if (img[idx])
+    label[idx] = y;
+  else
+    label[idx] = 0;
+
+  if (col + 1 < W) {
+    if (img[idx + 1])
+      label[idx + 1] = y;
+    else
+      label[idx + 1] = 0;
+
+    if (row + 1 < H) {
+      if (img[idx + W + 1])
+        label[idx + W + 1] = y;
+      else
+        label[idx + W + 1] = 0;
+    }
+  }
+
+  if (row + 1 < H) {
+    if (img[idx + W])
+      label[idx + W] = y;
+    else
+      label[idx + W] = 0;
+  }
+}
+
+__global__ void init_counting(
+    const int32_t* label,
+    int32_t* count_init,
+    const int32_t W,
+    const int32_t H) {
+  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
+  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
+  const uint32_t idx = row * W + col;
+
+  if (row >= H || col >= W)
+    return;
+
+  int32_t y = label[idx];
+  if (y > 0) {
+    int32_t count_idx = y - 1;
+    atomicAdd(count_init + count_idx, 1);
+  }
+}
+
+__global__ void final_counting(
+    const int32_t* label,
+    const int32_t* count_init,
+    int32_t* count_final,
+    const int32_t W,
+    const int32_t H) {
+  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
+  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
+  const uint32_t idx = row * W + col;
+
+  if (row >= H || col >= W)
+    return;
+
+  int32_t y = label[idx];
+  if (y > 0) {
+    int32_t count_idx = y - 1;
+    count_final[idx] = count_init[count_idx];
+  } else {
+    count_final[idx] = 0;
+  }
+}
+
+} // namespace cc2d
+
+std::vector<torch::Tensor> get_connected_componnets(
+    const torch::Tensor& inputs) {
+  AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor");
+  AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape");
+  AT_ASSERTM(
+      inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type");
+
+  const uint32_t N = inputs.size(0);
+  const uint32_t C = inputs.size(1);
+  const uint32_t H = inputs.size(2);
+  const uint32_t W = inputs.size(3);
+
+  AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape");
+  AT_ASSERTM((H % 2) == 0, "height must be an even number");
+  AT_ASSERTM((W % 2) == 0, "width must be an even number");
+
+  // label must be uint32_t
+  auto label_options =
+      torch::TensorOptions().dtype(torch::kInt32).device(inputs.device());
+  torch::Tensor labels = torch::zeros({N, C, H, W}, label_options);
+  torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options);
+  torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options);
+
+  dim3 grid = dim3(
+      ((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS,
+      ((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS);
+  dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS);
+  dim3 grid_count =
+      dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS);
+  dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS);
+  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
+
+  for (int n = 0; n < N; n++) {
+    uint32_t offset = n * H * W;
+
+    cc2d::init_labeling<<<grid, block, 0, stream>>>(
+        labels.data_ptr<int32_t>() + offset, W, H);
+    cc2d::merge<<<grid, block, 0, stream>>>(
+        inputs.data_ptr<uint8_t>() + offset,
+        labels.data_ptr<int32_t>() + offset,
+        W,
+        H);
+    cc2d::compression<<<grid, block, 0, stream>>>(
+        labels.data_ptr<int32_t>() + offset, W, H);
+    cc2d::final_labeling<<<grid, block, 0, stream>>>(
+        inputs.data_ptr<uint8_t>() + offset,
+        labels.data_ptr<int32_t>() + offset,
+        W,
+        H);
+
+    // get the counting of each pixel
+    cc2d::init_counting<<<grid_count, block_count, 0, stream>>>(
+        labels.data_ptr<int32_t>() + offset,
+        counts_init.data_ptr<int32_t>() + offset,
+        W,
+        H);
+    cc2d::final_counting<<<grid_count, block_count, 0, stream>>>(
+        labels.data_ptr<int32_t>() + offset,
+        counts_init.data_ptr<int32_t>() + offset,
+        counts_final.data_ptr<int32_t>() + offset,
+        W,
+        H);
+  }
+
+  // returned values are [labels, counts]
+  std::vector<torch::Tensor> outputs;
+  outputs.push_back(labels);
+  outputs.push_back(counts_final);
+  return outputs;
+}
+
+PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
+  m.def(
+      "get_connected_componnets",
+      &get_connected_componnets,
+      "get_connected_componnets");
+}
diff --git a/sam2/modeling/__init__.py b/sam2/modeling/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae
--- /dev/null
+++ b/sam2/modeling/__init__.py
@@ -0,0 +1,5 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
diff --git a/sam2/modeling/__pycache__/__init__.cpython-310.pyc b/sam2/modeling/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d2f1d89159dd995a09dbce7a22ae218c602c4913
Binary files /dev/null and b/sam2/modeling/__pycache__/__init__.cpython-310.pyc differ
diff --git a/sam2/modeling/__pycache__/memory_attention.cpython-310.pyc b/sam2/modeling/__pycache__/memory_attention.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a693ca9fb248e2e081c6371ce5f5014d404a115a
Binary files /dev/null and b/sam2/modeling/__pycache__/memory_attention.cpython-310.pyc differ
diff --git a/sam2/modeling/__pycache__/memory_encoder.cpython-310.pyc b/sam2/modeling/__pycache__/memory_encoder.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6e8fa618b496866c44f8fe9378a30523250e2116
Binary files /dev/null and b/sam2/modeling/__pycache__/memory_encoder.cpython-310.pyc differ
diff --git a/sam2/modeling/__pycache__/position_encoding.cpython-310.pyc b/sam2/modeling/__pycache__/position_encoding.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..47edcd005bb7dece83f7a77c0c71f66a0d9b9985
Binary files /dev/null and b/sam2/modeling/__pycache__/position_encoding.cpython-310.pyc differ
diff --git a/sam2/modeling/__pycache__/sam2_base.cpython-310.pyc b/sam2/modeling/__pycache__/sam2_base.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e929987e87aa12f04594492ecee2f686935d4c34
Binary files /dev/null and b/sam2/modeling/__pycache__/sam2_base.cpython-310.pyc differ
diff --git a/sam2/modeling/__pycache__/sam2_utils.cpython-310.pyc b/sam2/modeling/__pycache__/sam2_utils.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..93d30277d0d5db40b33b60876d82bdd937c29b1e
Binary files /dev/null and b/sam2/modeling/__pycache__/sam2_utils.cpython-310.pyc differ
diff --git a/sam2/modeling/backbones/__init__.py b/sam2/modeling/backbones/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae
--- /dev/null
+++ b/sam2/modeling/backbones/__init__.py
@@ -0,0 +1,5 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
diff --git a/sam2/modeling/backbones/__pycache__/__init__.cpython-310.pyc b/sam2/modeling/backbones/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6cea3f3e7354f0bc3d8c464a0e5800e594d9ad2d
Binary files /dev/null and b/sam2/modeling/backbones/__pycache__/__init__.cpython-310.pyc differ
diff --git a/sam2/modeling/backbones/__pycache__/hieradet.cpython-310.pyc b/sam2/modeling/backbones/__pycache__/hieradet.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cbc4a583f0af4c6f6dd0c5b1a90e04ce01f3c724
Binary files /dev/null and b/sam2/modeling/backbones/__pycache__/hieradet.cpython-310.pyc differ
diff --git a/sam2/modeling/backbones/__pycache__/image_encoder.cpython-310.pyc b/sam2/modeling/backbones/__pycache__/image_encoder.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a9a392fcf249773186bcc19371faacce795294e1
Binary files /dev/null and b/sam2/modeling/backbones/__pycache__/image_encoder.cpython-310.pyc differ
diff --git a/sam2/modeling/backbones/__pycache__/utils.cpython-310.pyc b/sam2/modeling/backbones/__pycache__/utils.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bbb1aaac423c1c9c9e01117aa6f20be020d9a556
Binary files /dev/null and b/sam2/modeling/backbones/__pycache__/utils.cpython-310.pyc differ
diff --git a/sam2/modeling/backbones/hieradet.py b/sam2/modeling/backbones/hieradet.py
new file mode 100644
index 0000000000000000000000000000000000000000..19ac77b61d8e1345a301686d39ef2ab6e4b035fb
--- /dev/null
+++ b/sam2/modeling/backbones/hieradet.py
@@ -0,0 +1,317 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+from functools import partial
+from typing import List, Tuple, Union
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from iopath.common.file_io import g_pathmgr
+
+from sam2.modeling.backbones.utils import (
+    PatchEmbed,
+    window_partition,
+    window_unpartition,
+)
+
+from sam2.modeling.sam2_utils import DropPath, MLP
+
+
+def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
+    if pool is None:
+        return x
+    # (B, H, W, C) -> (B, C, H, W)
+    x = x.permute(0, 3, 1, 2)
+    x = pool(x)
+    # (B, C, H', W') -> (B, H', W', C)
+    x = x.permute(0, 2, 3, 1)
+    if norm:
+        x = norm(x)
+
+    return x
+
+
+class MultiScaleAttention(nn.Module):
+    def __init__(
+        self,
+        dim: int,
+        dim_out: int,
+        num_heads: int,
+        q_pool: nn.Module = None,
+    ):
+        super().__init__()
+
+        self.dim = dim
+        self.dim_out = dim_out
+        self.num_heads = num_heads
+        self.q_pool = q_pool
+        self.qkv = nn.Linear(dim, dim_out * 3)
+        self.proj = nn.Linear(dim_out, dim_out)
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        B, H, W, _ = x.shape
+        # qkv with shape (B, H * W, 3, nHead, C)
+        qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
+        # q, k, v with shape (B, H * W, nheads, C)
+        q, k, v = torch.unbind(qkv, 2)
+
+        # Q pooling (for downsample at stage changes)
+        if self.q_pool:
+            q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
+            H, W = q.shape[1:3]  # downsampled shape
+            q = q.reshape(B, H * W, self.num_heads, -1)
+
+        # Torch's SDPA expects [B, nheads, H*W, C] so we transpose
+        x = F.scaled_dot_product_attention(
+            q.transpose(1, 2),
+            k.transpose(1, 2),
+            v.transpose(1, 2),
+        )
+        # Transpose back
+        x = x.transpose(1, 2)
+        x = x.reshape(B, H, W, -1)
+
+        x = self.proj(x)
+
+        return x
+
+
+class MultiScaleBlock(nn.Module):
+    def __init__(
+        self,
+        dim: int,
+        dim_out: int,
+        num_heads: int,
+        mlp_ratio: float = 4.0,
+        drop_path: float = 0.0,
+        norm_layer: Union[nn.Module, str] = "LayerNorm",
+        q_stride: Tuple[int, int] = None,
+        act_layer: nn.Module = nn.GELU,
+        window_size: int = 0,
+    ):
+        super().__init__()
+
+        if isinstance(norm_layer, str):
+            norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)
+
+        self.dim = dim
+        self.dim_out = dim_out
+        self.norm1 = norm_layer(dim)
+
+        self.window_size = window_size
+
+        self.pool, self.q_stride = None, q_stride
+        if self.q_stride:
+            self.pool = nn.MaxPool2d(
+                kernel_size=q_stride, stride=q_stride, ceil_mode=False
+            )
+
+        self.attn = MultiScaleAttention(
+            dim,
+            dim_out,
+            num_heads=num_heads,
+            q_pool=self.pool,
+        )
+        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
+
+        self.norm2 = norm_layer(dim_out)
+        self.mlp = MLP(
+            dim_out,
+            int(dim_out * mlp_ratio),
+            dim_out,
+            num_layers=2,
+            activation=act_layer,
+        )
+
+        if dim != dim_out:
+            self.proj = nn.Linear(dim, dim_out)
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        shortcut = x  # B, H, W, C
+        x = self.norm1(x)
+
+        # Skip connection
+        if self.dim != self.dim_out:
+            shortcut = do_pool(self.proj(x), self.pool)
+
+        # Window partition
+        window_size = self.window_size
+        if window_size > 0:
+            H, W = x.shape[1], x.shape[2]
+            x, pad_hw = window_partition(x, window_size)
+
+        # Window Attention + Q Pooling (if stage change)
+        x = self.attn(x)
+        if self.q_stride:
+            # Shapes have changed due to Q pooling
+            window_size = self.window_size // self.q_stride[0]
+            H, W = shortcut.shape[1:3]
+
+            pad_h = (window_size - H % window_size) % window_size
+            pad_w = (window_size - W % window_size) % window_size
+            pad_hw = (H + pad_h, W + pad_w)
+
+        # Reverse window partition
+        if self.window_size > 0:
+            x = window_unpartition(x, window_size, pad_hw, (H, W))
+
+        x = shortcut + self.drop_path(x)
+        # MLP
+        x = x + self.drop_path(self.mlp(self.norm2(x)))
+        return x
+
+
+class Hiera(nn.Module):
+    """
+    Reference: https://arxiv.org/abs/2306.00989
+    """
+
+    def __init__(
+        self,
+        embed_dim: int = 96,  # initial embed dim
+        num_heads: int = 1,  # initial number of heads
+        drop_path_rate: float = 0.0,  # stochastic depth
+        q_pool: int = 3,  # number of q_pool stages
+        q_stride: Tuple[int, int] = (2, 2),  # downsample stride bet. stages
+        stages: Tuple[int, ...] = (2, 3, 16, 3),  # blocks per stage
+        dim_mul: float = 2.0,  # dim_mul factor at stage shift
+        head_mul: float = 2.0,  # head_mul factor at stage shift
+        window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
+        # window size per stage, when not using global att.
+        window_spec: Tuple[int, ...] = (
+            8,
+            4,
+            14,
+            7,
+        ),
+        # global attn in these blocks
+        global_att_blocks: Tuple[int, ...] = (
+            12,
+            16,
+            20,
+        ),
+        weights_path=None,
+        return_interm_layers=True,  # return feats from every stage
+    ):
+        super().__init__()
+
+        assert len(stages) == len(window_spec)
+        self.window_spec = window_spec
+
+        depth = sum(stages)
+        self.q_stride = q_stride
+        self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
+        assert 0 <= q_pool <= len(self.stage_ends[:-1])
+        self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
+        self.return_interm_layers = return_interm_layers
+
+        self.patch_embed = PatchEmbed(
+            embed_dim=embed_dim,
+        )
+        # Which blocks have global att?
+        self.global_att_blocks = global_att_blocks
+
+        # Windowed positional embedding (https://arxiv.org/abs/2311.05613)
+        self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
+        self.pos_embed = nn.Parameter(
+            torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
+        )
+        self.pos_embed_window = nn.Parameter(
+            torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])
+        )
+
+        dpr = [
+            x.item() for x in torch.linspace(0, drop_path_rate, depth)
+        ]  # stochastic depth decay rule
+
+        cur_stage = 1
+        self.blocks = nn.ModuleList()
+
+        for i in range(depth):
+            dim_out = embed_dim
+            # lags by a block, so first block of
+            # next stage uses an initial window size
+            # of previous stage and final window size of current stage
+            window_size = self.window_spec[cur_stage - 1]
+
+            if self.global_att_blocks is not None:
+                window_size = 0 if i in self.global_att_blocks else window_size
+
+            if i - 1 in self.stage_ends:
+                dim_out = int(embed_dim * dim_mul)
+                num_heads = int(num_heads * head_mul)
+                cur_stage += 1
+
+            block = MultiScaleBlock(
+                dim=embed_dim,
+                dim_out=dim_out,
+                num_heads=num_heads,
+                drop_path=dpr[i],
+                q_stride=self.q_stride if i in self.q_pool_blocks else None,
+                window_size=window_size,
+            )
+
+            embed_dim = dim_out
+            self.blocks.append(block)
+
+        self.channel_list = (
+            [self.blocks[i].dim_out for i in self.stage_ends[::-1]]
+            if return_interm_layers
+            else [self.blocks[-1].dim_out]
+        )
+
+        if weights_path is not None:
+            with g_pathmgr.open(weights_path, "rb") as f:
+                chkpt = torch.load(f, map_location="cpu")
+            logging.info("loading Hiera", self.load_state_dict(chkpt, strict=False))
+
+    def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
+        h, w = hw
+        window_embed = self.pos_embed_window
+        pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
+        pos_embed = pos_embed + window_embed.tile(
+            [x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
+        )
+        pos_embed = pos_embed.permute(0, 2, 3, 1)
+        return pos_embed
+
+    def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
+        x = self.patch_embed(x)
+        # x: (B, H, W, C)
+
+        # Add pos embed
+        x = x + self._get_pos_embed(x.shape[1:3])
+
+        outputs = []
+        for i, blk in enumerate(self.blocks):
+            x = blk(x)
+            if (i == self.stage_ends[-1]) or (
+                i in self.stage_ends and self.return_interm_layers
+            ):
+                feats = x.permute(0, 3, 1, 2)
+                outputs.append(feats)
+
+        return outputs
+
+    def get_layer_id(self, layer_name):
+        # https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33
+        num_layers = self.get_num_layers()
+
+        if layer_name.find("rel_pos") != -1:
+            return num_layers + 1
+        elif layer_name.find("pos_embed") != -1:
+            return 0
+        elif layer_name.find("patch_embed") != -1:
+            return 0
+        elif layer_name.find("blocks") != -1:
+            return int(layer_name.split("blocks")[1].split(".")[1]) + 1
+        else:
+            return num_layers + 1
+
+    def get_num_layers(self) -> int:
+        return len(self.blocks)
diff --git a/sam2/modeling/backbones/image_encoder.py b/sam2/modeling/backbones/image_encoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..37e9266bc98596e97ca303118c910ed24f6cee2c
--- /dev/null
+++ b/sam2/modeling/backbones/image_encoder.py
@@ -0,0 +1,134 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import List, Optional
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+class ImageEncoder(nn.Module):
+    def __init__(
+        self,
+        trunk: nn.Module,
+        neck: nn.Module,
+        scalp: int = 0,
+    ):
+        super().__init__()
+        self.trunk = trunk
+        self.neck = neck
+        self.scalp = scalp
+        assert (
+            self.trunk.channel_list == self.neck.backbone_channel_list
+        ), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}"
+
+    def forward(self, sample: torch.Tensor):
+        # Forward through backbone
+        features, pos = self.neck(self.trunk(sample))
+        if self.scalp > 0:
+            # Discard the lowest resolution features
+            features, pos = features[: -self.scalp], pos[: -self.scalp]
+
+        src = features[-1]
+        output = {
+            "vision_features": src,
+            "vision_pos_enc": pos,
+            "backbone_fpn": features,
+        }
+        return output
+
+
+class FpnNeck(nn.Module):
+    """
+    A modified variant of Feature Pyramid Network (FPN) neck
+    (we remove output conv and also do bicubic interpolation similar to ViT
+    pos embed interpolation)
+    """
+
+    def __init__(
+        self,
+        position_encoding: nn.Module,
+        d_model: int,
+        backbone_channel_list: List[int],
+        kernel_size: int = 1,
+        stride: int = 1,
+        padding: int = 0,
+        fpn_interp_model: str = "bilinear",
+        fuse_type: str = "sum",
+        fpn_top_down_levels: Optional[List[int]] = None,
+    ):
+        """Initialize the neck
+        :param trunk: the backbone
+        :param position_encoding: the positional encoding to use
+        :param d_model: the dimension of the model
+        :param neck_norm: the normalization to use
+        """
+        super().__init__()
+        self.position_encoding = position_encoding
+        self.convs = nn.ModuleList()
+        self.backbone_channel_list = backbone_channel_list
+        self.d_model = d_model
+        for dim in backbone_channel_list:
+            current = nn.Sequential()
+            current.add_module(
+                "conv",
+                nn.Conv2d(
+                    in_channels=dim,
+                    out_channels=d_model,
+                    kernel_size=kernel_size,
+                    stride=stride,
+                    padding=padding,
+                ),
+            )
+
+            self.convs.append(current)
+        self.fpn_interp_model = fpn_interp_model
+        assert fuse_type in ["sum", "avg"]
+        self.fuse_type = fuse_type
+
+        # levels to have top-down features in its outputs
+        # e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
+        # have top-down propagation, while outputs of level 0 and level 1 have only
+        # lateral features from the same backbone level.
+        if fpn_top_down_levels is None:
+            # default is to have top-down features on all levels
+            fpn_top_down_levels = range(len(self.convs))
+        self.fpn_top_down_levels = list(fpn_top_down_levels)
+
+    def forward(self, xs: List[torch.Tensor]):
+
+        out = [None] * len(self.convs)
+        pos = [None] * len(self.convs)
+        assert len(xs) == len(self.convs)
+        # fpn forward pass
+        # see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
+        prev_features = None
+        # forward in top-down order (from low to high resolution)
+        n = len(self.convs) - 1
+        for i in range(n, -1, -1):
+            x = xs[i]
+            lateral_features = self.convs[n - i](x)
+            if i in self.fpn_top_down_levels and prev_features is not None:
+                top_down_features = F.interpolate(
+                    prev_features.to(dtype=torch.float32),
+                    scale_factor=2.0,
+                    mode=self.fpn_interp_model,
+                    align_corners=(
+                        None if self.fpn_interp_model == "nearest" else False
+                    ),
+                    antialias=False,
+                )
+                prev_features = lateral_features + top_down_features
+                if self.fuse_type == "avg":
+                    prev_features /= 2
+            else:
+                prev_features = lateral_features
+            x_out = prev_features
+            out[i] = x_out
+            pos[i] = self.position_encoding(x_out).to(x_out.dtype)
+
+        return out, pos
diff --git a/sam2/modeling/backbones/utils.py b/sam2/modeling/backbones/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..32d55c7545f064de133a5ff0200ba1ece9b504b7
--- /dev/null
+++ b/sam2/modeling/backbones/utils.py
@@ -0,0 +1,95 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+"""Some utilities for backbones, in particular for windowing"""
+
+from typing import Tuple
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+def window_partition(x, window_size):
+    """
+    Partition into non-overlapping windows with padding if needed.
+    Args:
+        x (tensor): input tokens with [B, H, W, C].
+        window_size (int): window size.
+    Returns:
+        windows: windows after partition with [B * num_windows, window_size, window_size, C].
+        (Hp, Wp): padded height and width before partition
+    """
+    B, H, W, C = x.shape
+
+    pad_h = (window_size - H % window_size) % window_size
+    pad_w = (window_size - W % window_size) % window_size
+    if pad_h > 0 or pad_w > 0:
+        x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
+    Hp, Wp = H + pad_h, W + pad_w
+
+    x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
+    windows = (
+        x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
+    )
+    return windows, (Hp, Wp)
+
+
+def window_unpartition(windows, window_size, pad_hw, hw):
+    """
+    Window unpartition into original sequences and removing padding.
+    Args:
+        x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
+        window_size (int): window size.
+        pad_hw (Tuple): padded height and width (Hp, Wp).
+        hw (Tuple): original height and width (H, W) before padding.
+    Returns:
+        x: unpartitioned sequences with [B, H, W, C].
+    """
+    Hp, Wp = pad_hw
+    H, W = hw
+    B = windows.shape[0] // (Hp * Wp // window_size // window_size)
+    x = windows.view(
+        B, Hp // window_size, Wp // window_size, window_size, window_size, -1
+    )
+    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
+
+    if Hp > H or Wp > W:
+        x = x[:, :H, :W, :].contiguous()
+    return x
+
+
+class PatchEmbed(nn.Module):
+    """
+    Image to Patch Embedding.
+    """
+
+    def __init__(
+        self,
+        kernel_size: Tuple[int, ...] = (7, 7),
+        stride: Tuple[int, ...] = (4, 4),
+        padding: Tuple[int, ...] = (3, 3),
+        in_chans: int = 3,
+        embed_dim: int = 768,
+    ):
+        """
+        Args:
+            kernel_size (Tuple): kernel size of the projection layer.
+            stride (Tuple): stride of the projection layer.
+            padding (Tuple): padding size of the projection layer.
+            in_chans (int): Number of input image channels.
+            embed_dim (int):  embed_dim (int): Patch embedding dimension.
+        """
+        super().__init__()
+        self.proj = nn.Conv2d(
+            in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
+        )
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        x = self.proj(x)
+        # B C H W -> B H W C
+        x = x.permute(0, 2, 3, 1)
+        return x
diff --git a/sam2/modeling/memory_attention.py b/sam2/modeling/memory_attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..31b0e012dc83ae1e761b1bb9c3a77d50a925f446
--- /dev/null
+++ b/sam2/modeling/memory_attention.py
@@ -0,0 +1,205 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import Optional
+
+import torch
+from torch import nn, Tensor
+
+from sam2.modeling.sam.transformer import RoPEAttention
+
+from sam2.modeling.sam2_utils import get_activation_fn, get_clones
+import pdb
+
+class MemoryAttentionLayer(nn.Module):
+
+    def __init__(
+        self,
+        activation: str,
+        cross_attention: nn.Module,
+        d_model: int,
+        dim_feedforward: int,
+        dropout: float,
+        pos_enc_at_attn: bool,
+        pos_enc_at_cross_attn_keys: bool,
+        pos_enc_at_cross_attn_queries: bool,
+        self_attention: nn.Module,
+    ):
+        super().__init__()
+        self.d_model = d_model
+        self.dim_feedforward = dim_feedforward
+        self.dropout_value = dropout
+        self.self_attn = self_attention
+        self.cross_attn_image = cross_attention
+
+        # Implementation of Feedforward model
+        self.linear1 = nn.Linear(d_model, dim_feedforward)
+        self.dropout = nn.Dropout(dropout)
+        self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+        self.norm1 = nn.LayerNorm(d_model)
+        self.norm2 = nn.LayerNorm(d_model)
+        self.norm3 = nn.LayerNorm(d_model)
+        self.dropout1 = nn.Dropout(dropout)
+        self.dropout2 = nn.Dropout(dropout)
+        self.dropout3 = nn.Dropout(dropout)
+
+        self.activation_str = activation
+        self.activation = get_activation_fn(activation)
+
+        # Where to add pos enc
+        self.pos_enc_at_attn = pos_enc_at_attn
+        self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
+        self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
+
+    def _forward_sa(self, tgt, query_pos):
+        # Self-Attention
+        tgt2 = self.norm1(tgt)
+        q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
+        tgt2 = self.self_attn(q, k, v=tgt2)
+        tgt = tgt + self.dropout1(tgt2)
+        return tgt
+
+    def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0, object_frame_scores=None, object_ptr_scores=None):
+        kwds = {}
+        if num_k_exclude_rope > 0:
+            assert isinstance(self.cross_attn_image, RoPEAttention)
+            kwds = {"num_k_exclude_rope": num_k_exclude_rope}
+        
+        # Cross-Attention
+        tgt2 = self.norm2(tgt)
+        if object_frame_scores is None: 
+            key = memory + pos if self.pos_enc_at_cross_attn_keys else memory
+        else: # relative
+            key_original = memory + pos if self.pos_enc_at_cross_attn_keys else memory
+            num_frame, num_ptr = len(object_frame_scores), len(object_ptr_scores)
+            num_frame_ = int(num_frame*4096)
+            num_object = key_original.shape[0]
+            key_frame = key_original[:, :num_frame_].reshape(num_object, num_frame, 4096, -1)
+            key_ptr = key_original[:, num_frame_:].reshape(num_object, num_ptr, 4, -1)
+            scaling_low = 0.95
+            scaling_high = 1.05
+            if num_frame == 1:
+                key = key_original
+            else:
+                weight_frame = torch.stack(object_frame_scores, dim=1) # num_object, num_frame
+                weight_ptr = torch.stack(object_ptr_scores, dim=1) # num_object, num_ptr
+
+                standard_weight_frame = torch.linspace(scaling_low, scaling_high, num_frame).to(weight_frame) # num_frame
+                standard_weight_ptr = torch.linspace(scaling_low, scaling_high, num_ptr).to(weight_ptr) # num_ptr
+
+                new_weight_frame = torch.zeros_like(weight_frame)
+                new_weight_ptr = torch.zeros_like(weight_ptr)
+
+                new_weight_frame.scatter_(1, torch.argsort(weight_frame, dim=1), standard_weight_frame.unsqueeze(0).repeat([num_object, 1]))
+                new_weight_ptr.scatter_(1, torch.argsort(weight_ptr, dim=1), standard_weight_ptr.unsqueeze(0).repeat([num_object, 1]))
+                
+                key_frame_scale = (new_weight_frame[:, :, None, None].to(key_frame.device) * key_frame)
+                key_ptr_scale = (new_weight_ptr[:, :, None, None].to(key_ptr.device) * key_ptr)
+                key = torch.cat([key_frame_scale.reshape(num_object, num_frame_, -1), key_ptr_scale.reshape(num_object, int(num_ptr*4), -1)], dim=1)
+        # key = memory + pos if self.pos_enc_at_cross_attn_keys else memory
+        tgt2 = self.cross_attn_image(
+            q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
+            k=key,
+            v=memory,
+            **kwds,
+        )
+        tgt = tgt + self.dropout2(tgt2)
+        return tgt
+
+    def forward(
+        self,
+        tgt,
+        memory,
+        pos: Optional[Tensor] = None,
+        query_pos: Optional[Tensor] = None,
+        num_k_exclude_rope: int = 0,
+        object_frame_scores = None,
+        object_ptr_scores = None,
+    ) -> torch.Tensor:
+
+        # Self-Attn, Cross-Attn
+        tgt = self._forward_sa(tgt, query_pos)
+        tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope, object_frame_scores, object_ptr_scores)
+        # MLP
+        tgt2 = self.norm3(tgt)
+        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
+        tgt = tgt + self.dropout3(tgt2)
+        return tgt
+
+
+class MemoryAttention(nn.Module):
+    def __init__(
+        self,
+        d_model: int,
+        pos_enc_at_input: bool,
+        layer: nn.Module,
+        num_layers: int,
+        batch_first: bool = True,  # Do layers expect batch first input?
+    ):
+        super().__init__()
+        self.d_model = d_model
+        self.layers = get_clones(layer, num_layers)
+        self.num_layers = num_layers
+        self.norm = nn.LayerNorm(d_model)
+        self.pos_enc_at_input = pos_enc_at_input
+        self.batch_first = batch_first
+
+    def forward(
+        self,
+        curr: torch.Tensor,  # self-attention inputs
+        memory: torch.Tensor,  # cross-attention inputs
+        curr_pos: Optional[Tensor] = None,  # pos_enc for self-attention inputs
+        memory_pos: Optional[Tensor] = None,  # pos_enc for cross-attention inputs
+        num_obj_ptr_tokens: int = 0,  # number of object pointer *tokens*
+        object_frame_scores=None,
+        object_ptr_scores=None,
+    ):
+        if isinstance(curr, list):
+            assert isinstance(curr_pos, list)
+            assert len(curr) == len(curr_pos) == 1
+            curr, curr_pos = (
+                curr[0],
+                curr_pos[0],
+            )
+
+        assert (
+            curr.shape[1] == memory.shape[1]
+        ), "Batch size must be the same for curr and memory"
+
+        output = curr
+        if self.pos_enc_at_input and curr_pos is not None:
+            output = output + 0.1 * curr_pos
+
+        if self.batch_first:
+            # Convert to batch first
+            output = output.transpose(0, 1)
+            curr_pos = curr_pos.transpose(0, 1)
+            memory = memory.transpose(0, 1)
+            memory_pos = memory_pos.transpose(0, 1)
+
+        for layer in self.layers:
+            kwds = {}
+            if isinstance(layer.cross_attn_image, RoPEAttention):
+                kwds = {"num_k_exclude_rope": num_obj_ptr_tokens,
+                        "object_frame_scores": object_frame_scores,
+                        "object_ptr_scores":object_ptr_scores}
+
+            output = layer(
+                tgt=output,
+                memory=memory,
+                pos=memory_pos,
+                query_pos=curr_pos,
+                **kwds,
+            )
+        normed_output = self.norm(output)
+
+        if self.batch_first:
+            # Convert back to seq first
+            normed_output = normed_output.transpose(0, 1)
+            curr_pos = curr_pos.transpose(0, 1)
+
+        return normed_output
\ No newline at end of file
diff --git a/sam2/modeling/memory_encoder.py b/sam2/modeling/memory_encoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..d6439b3410d1c82769fe59389f18e28d4a1712c6
--- /dev/null
+++ b/sam2/modeling/memory_encoder.py
@@ -0,0 +1,181 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+from typing import Tuple
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d
+
+
+class MaskDownSampler(nn.Module):
+    """
+    Progressively downsample a mask by total_stride, each time by stride.
+    Note that LayerNorm is applied per *token*, like in ViT.
+
+    With each downsample (by a factor stride**2), channel capacity increases by the same factor.
+    In the end, we linearly project to embed_dim channels.
+    """
+
+    def __init__(
+        self,
+        embed_dim=256,
+        kernel_size=4,
+        stride=4,
+        padding=0,
+        total_stride=16,
+        activation=nn.GELU,
+    ):
+        super().__init__()
+        num_layers = int(math.log2(total_stride) // math.log2(stride))
+        assert stride**num_layers == total_stride
+        self.encoder = nn.Sequential()
+        mask_in_chans, mask_out_chans = 1, 1
+        for _ in range(num_layers):
+            mask_out_chans = mask_in_chans * (stride**2)
+            self.encoder.append(
+                nn.Conv2d(
+                    mask_in_chans,
+                    mask_out_chans,
+                    kernel_size=kernel_size,
+                    stride=stride,
+                    padding=padding,
+                )
+            )
+            self.encoder.append(LayerNorm2d(mask_out_chans))
+            self.encoder.append(activation())
+            mask_in_chans = mask_out_chans
+
+        self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))
+
+    def forward(self, x):
+        return self.encoder(x)
+
+
+# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
+class CXBlock(nn.Module):
+    r"""ConvNeXt Block. There are two equivalent implementations:
+    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
+    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
+    We use (2) as we find it slightly faster in PyTorch
+
+    Args:
+        dim (int): Number of input channels.
+        drop_path (float): Stochastic depth rate. Default: 0.0
+        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
+    """
+
+    def __init__(
+        self,
+        dim,
+        kernel_size=7,
+        padding=3,
+        drop_path=0.0,
+        layer_scale_init_value=1e-6,
+        use_dwconv=True,
+    ):
+        super().__init__()
+        self.dwconv = nn.Conv2d(
+            dim,
+            dim,
+            kernel_size=kernel_size,
+            padding=padding,
+            groups=dim if use_dwconv else 1,
+        )  # depthwise conv
+        self.norm = LayerNorm2d(dim, eps=1e-6)
+        self.pwconv1 = nn.Linear(
+            dim, 4 * dim
+        )  # pointwise/1x1 convs, implemented with linear layers
+        self.act = nn.GELU()
+        self.pwconv2 = nn.Linear(4 * dim, dim)
+        self.gamma = (
+            nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
+            if layer_scale_init_value > 0
+            else None
+        )
+        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
+
+    def forward(self, x):
+        input = x
+        x = self.dwconv(x)
+        x = self.norm(x)
+        x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
+        x = self.pwconv1(x)
+        x = self.act(x)
+        x = self.pwconv2(x)
+        if self.gamma is not None:
+            x = self.gamma * x
+        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)
+
+        x = input + self.drop_path(x)
+        return x
+
+
+class Fuser(nn.Module):
+    def __init__(self, layer, num_layers, dim=None, input_projection=False):
+        super().__init__()
+        self.proj = nn.Identity()
+        self.layers = get_clones(layer, num_layers)
+
+        if input_projection:
+            assert dim is not None
+            self.proj = nn.Conv2d(dim, dim, kernel_size=1)
+
+    def forward(self, x):
+        # normally x: (N, C, H, W)
+        x = self.proj(x)
+        for layer in self.layers:
+            x = layer(x)
+        return x
+
+
+class MemoryEncoder(nn.Module):
+    def __init__(
+        self,
+        out_dim,
+        mask_downsampler,
+        fuser,
+        position_encoding,
+        in_dim=256,  # in_dim of pix_feats
+    ):
+        super().__init__()
+
+        self.mask_downsampler = mask_downsampler
+
+        self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
+        self.fuser = fuser
+        self.position_encoding = position_encoding
+        self.out_proj = nn.Identity()
+        if out_dim != in_dim:
+            self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
+
+    def forward(
+        self,
+        pix_feat: torch.Tensor,
+        masks: torch.Tensor,
+        skip_mask_sigmoid: bool = False,
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+        ## Process masks
+        # sigmoid, so that less domain shift from gt masks which are bool
+        if not skip_mask_sigmoid:
+            masks = F.sigmoid(masks)
+        masks = self.mask_downsampler(masks)
+
+        ## Fuse pix_feats and downsampled masks
+        # in case the visual features are on CPU, cast them to CUDA
+        pix_feat = pix_feat.to(masks.device)
+
+        x = self.pix_feat_proj(pix_feat)
+        x = x + masks
+        x = self.fuser(x)
+        x = self.out_proj(x)
+
+        pos = self.position_encoding(x).to(x.dtype)
+
+        return {"vision_features": x, "vision_pos_enc": [pos]}
\ No newline at end of file
diff --git a/sam2/modeling/position_encoding.py b/sam2/modeling/position_encoding.py
new file mode 100644
index 0000000000000000000000000000000000000000..52ac22674d5d4fdd9e83b6bdf034bff56d04bc0d
--- /dev/null
+++ b/sam2/modeling/position_encoding.py
@@ -0,0 +1,221 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+from typing import Any, Optional, Tuple
+
+import numpy as np
+
+import torch
+from torch import nn
+
+
+class PositionEmbeddingSine(nn.Module):
+    """
+    This is a more standard version of the position embedding, very similar to the one
+    used by the Attention Is All You Need paper, generalized to work on images.
+    """
+
+    def __init__(
+        self,
+        num_pos_feats,
+        temperature: int = 10000,
+        normalize: bool = True,
+        scale: Optional[float] = None,
+    ):
+        super().__init__()
+        assert num_pos_feats % 2 == 0, "Expecting even model width"
+        self.num_pos_feats = num_pos_feats // 2
+        self.temperature = temperature
+        self.normalize = normalize
+        if scale is not None and normalize is False:
+            raise ValueError("normalize should be True if scale is passed")
+        if scale is None:
+            scale = 2 * math.pi
+        self.scale = scale
+
+        self.cache = {}
+
+    def _encode_xy(self, x, y):
+        # The positions are expected to be normalized
+        assert len(x) == len(y) and x.ndim == y.ndim == 1
+        x_embed = x * self.scale
+        y_embed = y * self.scale
+
+        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
+        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
+
+        pos_x = x_embed[:, None] / dim_t
+        pos_y = y_embed[:, None] / dim_t
+        pos_x = torch.stack(
+            (pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2
+        ).flatten(1)
+        pos_y = torch.stack(
+            (pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2
+        ).flatten(1)
+        return pos_x, pos_y
+
+    @torch.no_grad()
+    def encode_boxes(self, x, y, w, h):
+        pos_x, pos_y = self._encode_xy(x, y)
+        pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
+        return pos
+
+    encode = encode_boxes  # Backwards compatibility
+
+    @torch.no_grad()
+    def encode_points(self, x, y, labels):
+        (bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
+        assert bx == by and nx == ny and bx == bl and nx == nl
+        pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
+        pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
+        pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
+        return pos
+
+    @torch.no_grad()
+    def forward(self, x: torch.Tensor):
+        cache_key = (x.shape[-2], x.shape[-1])
+        if cache_key in self.cache:
+            return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1)
+        y_embed = (
+            torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device)
+            .view(1, -1, 1)
+            .repeat(x.shape[0], 1, x.shape[-1])
+        )
+        x_embed = (
+            torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device)
+            .view(1, 1, -1)
+            .repeat(x.shape[0], x.shape[-2], 1)
+        )
+
+        if self.normalize:
+            eps = 1e-6
+            y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
+            x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
+
+        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
+        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
+
+        pos_x = x_embed[:, :, :, None] / dim_t
+        pos_y = y_embed[:, :, :, None] / dim_t
+        pos_x = torch.stack(
+            (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
+        ).flatten(3)
+        pos_y = torch.stack(
+            (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
+        ).flatten(3)
+        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
+        self.cache[cache_key] = pos[0]
+        return pos
+
+
+class PositionEmbeddingRandom(nn.Module):
+    """
+    Positional encoding using random spatial frequencies.
+    """
+
+    def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
+        super().__init__()
+        if scale is None or scale <= 0.0:
+            scale = 1.0
+        self.register_buffer(
+            "positional_encoding_gaussian_matrix",
+            scale * torch.randn((2, num_pos_feats)),
+        )
+
+    def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
+        """Positionally encode points that are normalized to [0,1]."""
+        # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
+        coords = 2 * coords - 1
+        coords = coords @ self.positional_encoding_gaussian_matrix
+        coords = 2 * np.pi * coords
+        # outputs d_1 x ... x d_n x C shape
+        return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
+
+    def forward(self, size: Tuple[int, int]) -> torch.Tensor:
+        """Generate positional encoding for a grid of the specified size."""
+        h, w = size
+        device: Any = self.positional_encoding_gaussian_matrix.device
+        grid = torch.ones((h, w), device=device, dtype=torch.float32)
+        y_embed = grid.cumsum(dim=0) - 0.5
+        x_embed = grid.cumsum(dim=1) - 0.5
+        y_embed = y_embed / h
+        x_embed = x_embed / w
+
+        pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
+        return pe.permute(2, 0, 1)  # C x H x W
+
+    def forward_with_coords(
+        self, coords_input: torch.Tensor, image_size: Tuple[int, int]
+    ) -> torch.Tensor:
+        """Positionally encode points that are not normalized to [0,1]."""
+        coords = coords_input.clone()
+        coords[:, :, 0] = coords[:, :, 0] / image_size[1]
+        coords[:, :, 1] = coords[:, :, 1] / image_size[0]
+        return self._pe_encoding(coords.to(torch.float))  # B x N x C
+
+
+# Rotary Positional Encoding, adapted from:
+# 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py
+# 2. https://github.com/naver-ai/rope-vit
+# 3. https://github.com/lucidrains/rotary-embedding-torch
+
+
+def init_t_xy(end_x: int, end_y: int):
+    t = torch.arange(end_x * end_y, dtype=torch.float32)
+    t_x = (t % end_x).float()
+    t_y = torch.div(t, end_x, rounding_mode="floor").float()
+    return t_x, t_y
+
+
+def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0):
+    freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
+    freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
+
+    t_x, t_y = init_t_xy(end_x, end_y)
+    freqs_x = torch.outer(t_x, freqs_x)
+    freqs_y = torch.outer(t_y, freqs_y)
+    freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
+    freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
+    return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
+
+
+def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
+    ndim = x.ndim
+    assert 0 <= 1 < ndim
+    assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
+    shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
+    return freqs_cis.view(*shape)
+
+
+def apply_rotary_enc(
+    xq: torch.Tensor,
+    xk: torch.Tensor,
+    freqs_cis: torch.Tensor,
+    repeat_freqs_k: bool = False,
+):
+    xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
+    xk_ = (
+        torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
+        if xk.shape[-2] != 0
+        else None
+    )
+    freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
+    xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
+    if xk_ is None:
+        # no keys to rotate, due to dropout
+        return xq_out.type_as(xq).to(xq.device), xk
+    # repeat freqs along seq_len dim to match k seq_len
+    if repeat_freqs_k:
+        r = xk_.shape[-2] // xq_.shape[-2]
+        if freqs_cis.is_cuda:
+            freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
+        else:
+            # torch.repeat on complex numbers may not be supported on non-CUDA devices
+            # (freqs_cis has 4 dims and we repeat on dim 2) so we use expand + flatten
+            freqs_cis = freqs_cis.unsqueeze(2).expand(-1, -1, r, -1, -1).flatten(2, 3)
+    xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
+    return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
diff --git a/sam2/modeling/sam/__init__.py b/sam2/modeling/sam/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae
--- /dev/null
+++ b/sam2/modeling/sam/__init__.py
@@ -0,0 +1,5 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
diff --git a/sam2/modeling/sam/__pycache__/__init__.cpython-310.pyc b/sam2/modeling/sam/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6744f0d3b038ee8c93ac709389045124c7806695
Binary files /dev/null and b/sam2/modeling/sam/__pycache__/__init__.cpython-310.pyc differ
diff --git a/sam2/modeling/sam/__pycache__/mask_decoder.cpython-310.pyc b/sam2/modeling/sam/__pycache__/mask_decoder.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7993470a7bdc8c1513a8abbb04789ab6c151bdbe
Binary files /dev/null and b/sam2/modeling/sam/__pycache__/mask_decoder.cpython-310.pyc differ
diff --git a/sam2/modeling/sam/__pycache__/prompt_encoder.cpython-310.pyc b/sam2/modeling/sam/__pycache__/prompt_encoder.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1129002ee403719fafb010adc9e27d04e6a3da15
Binary files /dev/null and b/sam2/modeling/sam/__pycache__/prompt_encoder.cpython-310.pyc differ
diff --git a/sam2/modeling/sam/__pycache__/transformer.cpython-310.pyc b/sam2/modeling/sam/__pycache__/transformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..677d54c0ca7c717d9b06a9fc3989983c3bcf47d2
Binary files /dev/null and b/sam2/modeling/sam/__pycache__/transformer.cpython-310.pyc differ
diff --git a/sam2/modeling/sam/mask_decoder.py b/sam2/modeling/sam/mask_decoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..7f31fd6041acc0660573995688cb745e409db7a7
--- /dev/null
+++ b/sam2/modeling/sam/mask_decoder.py
@@ -0,0 +1,300 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import List, Optional, Tuple, Type
+
+import torch
+from torch import nn
+import pdb
+from fvcore.nn import FlopCountAnalysis
+from sam2.modeling.sam2_utils import LayerNorm2d, MLP
+
+
+class MaskDecoder(nn.Module):
+    def __init__(
+        self,
+        *,
+        transformer_dim: int,
+        transformer: nn.Module,
+        num_multimask_outputs: int = 3,
+        activation: Type[nn.Module] = nn.GELU,
+        iou_head_depth: int = 3,
+        iou_head_hidden_dim: int = 256,
+        use_high_res_features: bool = False,
+        iou_prediction_use_sigmoid=False,
+        dynamic_multimask_via_stability=False,
+        dynamic_multimask_stability_delta=0.05,
+        dynamic_multimask_stability_thresh=0.98,
+        pred_obj_scores: bool = False,
+        pred_obj_scores_mlp: bool = False,
+        use_multimask_token_for_obj_ptr: bool = False,
+    ) -> None:
+        """
+        Predicts masks given an image and prompt embeddings, using a
+        transformer architecture.
+
+        Arguments:
+          transformer_dim (int): the channel dimension of the transformer
+          transformer (nn.Module): the transformer used to predict masks
+          num_multimask_outputs (int): the number of masks to predict
+            when disambiguating masks
+          activation (nn.Module): the type of activation to use when
+            upscaling masks
+          iou_head_depth (int): the depth of the MLP used to predict
+            mask quality
+          iou_head_hidden_dim (int): the hidden dimension of the MLP
+            used to predict mask quality
+        """
+        super().__init__()
+        self.transformer_dim = transformer_dim
+        self.transformer = transformer
+
+        self.num_multimask_outputs = num_multimask_outputs
+
+        self.iou_token = nn.Embedding(1, transformer_dim)
+        self.num_mask_tokens = num_multimask_outputs + 1
+        self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
+
+        self.pred_obj_scores = pred_obj_scores
+        if self.pred_obj_scores:
+            self.obj_score_token = nn.Embedding(1, transformer_dim)
+        self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
+
+        self.output_upscaling = nn.Sequential(
+            nn.ConvTranspose2d(
+                transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
+            ),
+            LayerNorm2d(transformer_dim // 4),
+            activation(),
+            nn.ConvTranspose2d(
+                transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
+            ),
+            activation(),
+        )
+        self.use_high_res_features = use_high_res_features
+        if use_high_res_features:
+            self.conv_s0 = nn.Conv2d(
+                transformer_dim, transformer_dim // 8, kernel_size=1, stride=1
+            )
+            self.conv_s1 = nn.Conv2d(
+                transformer_dim, transformer_dim // 4, kernel_size=1, stride=1
+            )
+
+        self.output_hypernetworks_mlps = nn.ModuleList(
+            [
+                MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
+                for i in range(self.num_mask_tokens)
+            ]
+        )
+
+        self.iou_prediction_head = MLP(
+            transformer_dim,
+            iou_head_hidden_dim,
+            self.num_mask_tokens,
+            iou_head_depth,
+            sigmoid_output=iou_prediction_use_sigmoid,
+        )
+        if self.pred_obj_scores:
+            self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
+            if pred_obj_scores_mlp:
+                self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
+
+        # When outputting a single mask, optionally we can dynamically fall back to the best
+        # multimask output token if the single mask output token gives low stability scores.
+        self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
+        self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
+        self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
+
+
+
+    def forward(
+        self,
+        image_embeddings: torch.Tensor,
+        image_pe: torch.Tensor,
+        sparse_prompt_embeddings: torch.Tensor,
+        dense_prompt_embeddings: torch.Tensor,
+        multimask_output: bool,
+        repeat_image: bool,
+        high_res_features: Optional[List[torch.Tensor]] = None,
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+        """
+        Predict masks given image and prompt embeddings.
+
+        Arguments:
+          image_embeddings (torch.Tensor): the embeddings from the image encoder
+          image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
+          sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
+          dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
+          multimask_output (bool): Whether to return multiple masks or a single
+            mask.
+
+        Returns:
+          torch.Tensor: batched predicted masks
+          torch.Tensor: batched predictions of mask quality
+          torch.Tensor: batched SAM token for mask output
+        """
+        masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
+            image_embeddings=image_embeddings,
+            image_pe=image_pe,
+            sparse_prompt_embeddings=sparse_prompt_embeddings,
+            dense_prompt_embeddings=dense_prompt_embeddings,
+            repeat_image=repeat_image,
+            high_res_features=high_res_features,
+        )
+
+        # Select the correct mask or masks for output
+        if multimask_output:
+            masks = masks[:, 1:, :, :]
+            iou_pred = iou_pred[:, 1:]
+        elif self.dynamic_multimask_via_stability and not self.training:
+            masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
+        else:
+            masks = masks[:, 0:1, :, :]
+            iou_pred = iou_pred[:, 0:1]
+
+        if multimask_output and self.use_multimask_token_for_obj_ptr:
+            sam_tokens_out = mask_tokens_out[:, 1:]  # [b, 3, c] shape
+        else:
+            # Take the mask output token. Here we *always* use the token for single mask output.
+            # At test time, even if we track after 1-click (and using multimask_output=True),
+            # we still take the single mask token here. The rationale is that we always track
+            # after multiple clicks during training, so the past tokens seen during training
+            # are always the single mask token (and we'll let it be the object-memory token).
+            sam_tokens_out = mask_tokens_out[:, 0:1]  # [b, 1, c] shape
+
+        # Prepare output
+        return masks, iou_pred, sam_tokens_out, object_score_logits
+
+    def predict_masks(
+        self,
+        image_embeddings: torch.Tensor,
+        image_pe: torch.Tensor,
+        sparse_prompt_embeddings: torch.Tensor,
+        dense_prompt_embeddings: torch.Tensor,
+        repeat_image: bool,
+        high_res_features: Optional[List[torch.Tensor]] = None,
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+        """Predicts masks. See 'forward' for more details."""
+        # Concatenate output tokens
+        s = 0
+        if self.pred_obj_scores:
+            output_tokens = torch.cat(
+                [
+                    self.obj_score_token.weight,
+                    self.iou_token.weight,
+                    self.mask_tokens.weight,
+                ],
+                dim=0,
+            )
+            s = 1
+        else:
+            output_tokens = torch.cat(
+                [self.iou_token.weight, self.mask_tokens.weight], dim=0
+            )
+        output_tokens = output_tokens.unsqueeze(0).expand(
+            sparse_prompt_embeddings.size(0), -1, -1
+        )
+        tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
+
+        # Expand per-image data in batch direction to be per-mask
+        if repeat_image:
+            src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
+        else:
+            assert image_embeddings.shape[0] == tokens.shape[0]
+            src = image_embeddings
+        src = src + dense_prompt_embeddings
+        assert (
+            image_pe.size(0) == 1
+        ), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
+        pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
+        b, c, h, w = src.shape
+
+
+
+        # Run the transformer
+        hs, src = self.transformer(src, pos_src, tokens)
+        iou_token_out = hs[:, s, :]
+        mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
+
+        # Upscale mask embeddings and predict masks using the mask tokens
+        src = src.transpose(1, 2).view(b, c, h, w)
+        if not self.use_high_res_features:
+            upscaled_embedding = self.output_upscaling(src)
+        else:
+            dc1, ln1, act1, dc2, act2 = self.output_upscaling
+            feat_s0, feat_s1 = high_res_features
+            upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
+            upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
+        
+        hyper_in_list: List[torch.Tensor] = []
+        for i in range(self.num_mask_tokens):
+            hyper_in_list.append(
+                self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
+            )
+        hyper_in = torch.stack(hyper_in_list, dim=1)
+        b, c, h, w = upscaled_embedding.shape
+        masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
+
+        # Generate mask quality predictions
+        iou_pred = self.iou_prediction_head(iou_token_out)
+        if self.pred_obj_scores:
+            assert s == 1
+            object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
+        else:
+            # Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
+            object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
+
+        return masks, iou_pred, mask_tokens_out, object_score_logits
+
+    def _get_stability_scores(self, mask_logits):
+        """
+        Compute stability scores of the mask logits based on the IoU between upper and
+        lower thresholds.
+        """
+        mask_logits = mask_logits.flatten(-2)
+        stability_delta = self.dynamic_multimask_stability_delta
+        area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
+        area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
+        stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
+        return stability_scores
+
+    def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
+        """
+        When outputting a single mask, if the stability score from the current single-mask
+        output (based on output token 0) falls below a threshold, we instead select from
+        multi-mask outputs (based on output token 1~3) the mask with the highest predicted
+        IoU score. This is intended to ensure a valid mask for both clicking and tracking.
+        """
+        # The best mask from multimask output tokens (1~3)
+        multimask_logits = all_mask_logits[:, 1:, :, :]
+        multimask_iou_scores = all_iou_scores[:, 1:]
+        best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
+        batch_inds = torch.arange(
+            multimask_iou_scores.size(0), device=all_iou_scores.device
+        )
+        best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
+        best_multimask_logits = best_multimask_logits.unsqueeze(1)
+        best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
+        best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
+
+        # The mask from singlemask output token 0 and its stability score
+        singlemask_logits = all_mask_logits[:, 0:1, :, :]
+        singlemask_iou_scores = all_iou_scores[:, 0:1]
+        stability_scores = self._get_stability_scores(singlemask_logits)
+        is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
+
+        # Dynamically fall back to best multimask output upon low stability scores.
+        mask_logits_out = torch.where(
+            is_stable[..., None, None].expand_as(singlemask_logits),
+            singlemask_logits,
+            best_multimask_logits,
+        )
+        iou_scores_out = torch.where(
+            is_stable.expand_as(singlemask_iou_scores),
+            singlemask_iou_scores,
+            best_multimask_iou_scores,
+        )
+        return mask_logits_out, iou_scores_out
diff --git a/sam2/modeling/sam/prompt_encoder.py b/sam2/modeling/sam/prompt_encoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..7e820a2dd1e3d4686bd8875ad0f2ef794bfdde49
--- /dev/null
+++ b/sam2/modeling/sam/prompt_encoder.py
@@ -0,0 +1,182 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import Optional, Tuple, Type
+
+import torch
+from torch import nn
+
+from sam2.modeling.position_encoding import PositionEmbeddingRandom
+
+from sam2.modeling.sam2_utils import LayerNorm2d
+
+
+class PromptEncoder(nn.Module):
+    def __init__(
+        self,
+        embed_dim: int,
+        image_embedding_size: Tuple[int, int],
+        input_image_size: Tuple[int, int],
+        mask_in_chans: int,
+        activation: Type[nn.Module] = nn.GELU,
+    ) -> None:
+        """
+        Encodes prompts for input to SAM's mask decoder.
+
+        Arguments:
+          embed_dim (int): The prompts' embedding dimension
+          image_embedding_size (tuple(int, int)): The spatial size of the
+            image embedding, as (H, W).
+          input_image_size (int): The padded size of the image as input
+            to the image encoder, as (H, W).
+          mask_in_chans (int): The number of hidden channels used for
+            encoding input masks.
+          activation (nn.Module): The activation to use when encoding
+            input masks.
+        """
+        super().__init__()
+        self.embed_dim = embed_dim
+        self.input_image_size = input_image_size
+        self.image_embedding_size = image_embedding_size
+        self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
+
+        self.num_point_embeddings: int = 4  # pos/neg point + 2 box corners
+        point_embeddings = [
+            nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)
+        ]
+        self.point_embeddings = nn.ModuleList(point_embeddings)
+        self.not_a_point_embed = nn.Embedding(1, embed_dim)
+
+        self.mask_input_size = (
+            4 * image_embedding_size[0],
+            4 * image_embedding_size[1],
+        )
+        self.mask_downscaling = nn.Sequential(
+            nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
+            LayerNorm2d(mask_in_chans // 4),
+            activation(),
+            nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
+            LayerNorm2d(mask_in_chans),
+            activation(),
+            nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
+        )
+        self.no_mask_embed = nn.Embedding(1, embed_dim)
+
+    def get_dense_pe(self) -> torch.Tensor:
+        """
+        Returns the positional encoding used to encode point prompts,
+        applied to a dense set of points the shape of the image encoding.
+
+        Returns:
+          torch.Tensor: Positional encoding with shape
+            1x(embed_dim)x(embedding_h)x(embedding_w)
+        """
+        return self.pe_layer(self.image_embedding_size).unsqueeze(0)
+
+    def _embed_points(
+        self,
+        points: torch.Tensor,
+        labels: torch.Tensor,
+        pad: bool,
+    ) -> torch.Tensor:
+        """Embeds point prompts."""
+        points = points + 0.5  # Shift to center of pixel
+        if pad:
+            padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
+            padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
+            points = torch.cat([points, padding_point], dim=1)
+            labels = torch.cat([labels, padding_label], dim=1)
+        point_embedding = self.pe_layer.forward_with_coords(
+            points, self.input_image_size
+        )
+        point_embedding[labels == -1] = 0.0
+        point_embedding[labels == -1] += self.not_a_point_embed.weight
+        point_embedding[labels == 0] += self.point_embeddings[0].weight
+        point_embedding[labels == 1] += self.point_embeddings[1].weight
+        point_embedding[labels == 2] += self.point_embeddings[2].weight
+        point_embedding[labels == 3] += self.point_embeddings[3].weight
+        return point_embedding
+
+    def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
+        """Embeds box prompts."""
+        boxes = boxes + 0.5  # Shift to center of pixel
+        coords = boxes.reshape(-1, 2, 2)
+        corner_embedding = self.pe_layer.forward_with_coords(
+            coords, self.input_image_size
+        )
+        corner_embedding[:, 0, :] += self.point_embeddings[2].weight
+        corner_embedding[:, 1, :] += self.point_embeddings[3].weight
+        return corner_embedding
+
+    def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
+        """Embeds mask inputs."""
+        mask_embedding = self.mask_downscaling(masks)
+        return mask_embedding
+
+    def _get_batch_size(
+        self,
+        points: Optional[Tuple[torch.Tensor, torch.Tensor]],
+        boxes: Optional[torch.Tensor],
+        masks: Optional[torch.Tensor],
+    ) -> int:
+        """
+        Gets the batch size of the output given the batch size of the input prompts.
+        """
+        if points is not None:
+            return points[0].shape[0]
+        elif boxes is not None:
+            return boxes.shape[0]
+        elif masks is not None:
+            return masks.shape[0]
+        else:
+            return 1
+
+    def _get_device(self) -> torch.device:
+        return self.point_embeddings[0].weight.device
+
+    def forward(
+        self,
+        points: Optional[Tuple[torch.Tensor, torch.Tensor]],
+        boxes: Optional[torch.Tensor],
+        masks: Optional[torch.Tensor],
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+        """
+        Embeds different types of prompts, returning both sparse and dense
+        embeddings.
+
+        Arguments:
+          points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
+            and labels to embed.
+          boxes (torch.Tensor or none): boxes to embed
+          masks (torch.Tensor or none): masks to embed
+
+        Returns:
+          torch.Tensor: sparse embeddings for the points and boxes, with shape
+            BxNx(embed_dim), where N is determined by the number of input points
+            and boxes.
+          torch.Tensor: dense embeddings for the masks, in the shape
+            Bx(embed_dim)x(embed_H)x(embed_W)
+        """
+        bs = self._get_batch_size(points, boxes, masks)
+        sparse_embeddings = torch.empty(
+            (bs, 0, self.embed_dim), device=self._get_device()
+        )
+        if points is not None:
+            coords, labels = points
+            point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
+            sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
+        if boxes is not None:
+            box_embeddings = self._embed_boxes(boxes)
+            sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
+
+        if masks is not None:
+            dense_embeddings = self._embed_masks(masks)
+        else:
+            dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
+                bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
+            )
+
+        return sparse_embeddings, dense_embeddings
\ No newline at end of file
diff --git a/sam2/modeling/sam/transformer.py b/sam2/modeling/sam/transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..b5b6fa2f87e85a7f222fb2ba0b661734dc57a08a
--- /dev/null
+++ b/sam2/modeling/sam/transformer.py
@@ -0,0 +1,360 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import contextlib
+import math
+import warnings
+from functools import partial
+from typing import Tuple, Type
+
+import torch
+import torch.nn.functional as F
+from torch import nn, Tensor
+
+from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis
+from sam2.modeling.sam2_utils import MLP
+from sam2.utils.misc import get_sdpa_settings
+
+warnings.simplefilter(action="ignore", category=FutureWarning)
+# Check whether Flash Attention is available (and use it by default)
+OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings()
+# A fallback setting to allow all available kernels if Flash Attention fails
+ALLOW_ALL_KERNELS = False
+
+
+def sdp_kernel_context(dropout_p):
+    """
+    Get the context for the attention scaled dot-product kernel. We use Flash Attention
+    by default, but fall back to all available kernels if Flash Attention fails.
+    """
+    if ALLOW_ALL_KERNELS:
+        return contextlib.nullcontext()
+
+    return torch.backends.cuda.sdp_kernel(
+        enable_flash=USE_FLASH_ATTN,
+        # if Flash attention kernel is off, then math kernel needs to be enabled
+        enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON,
+        enable_mem_efficient=OLD_GPU,
+    )
+
+
+class TwoWayTransformer(nn.Module):
+    def __init__(
+        self,
+        depth: int,
+        embedding_dim: int,
+        num_heads: int,
+        mlp_dim: int,
+        activation: Type[nn.Module] = nn.ReLU,
+        attention_downsample_rate: int = 2,
+    ) -> None:
+        """
+        A transformer decoder that attends to an input image using
+        queries whose positional embedding is supplied.
+
+        Args:
+          depth (int): number of layers in the transformer
+          embedding_dim (int): the channel dimension for the input embeddings
+          num_heads (int): the number of heads for multihead attention. Must
+            divide embedding_dim
+          mlp_dim (int): the channel dimension internal to the MLP block
+          activation (nn.Module): the activation to use in the MLP block
+        """
+        super().__init__()
+        self.depth = depth
+        self.embedding_dim = embedding_dim
+        self.num_heads = num_heads
+        self.mlp_dim = mlp_dim
+        self.layers = nn.ModuleList()
+
+        for i in range(depth):
+            self.layers.append(
+                TwoWayAttentionBlock(
+                    embedding_dim=embedding_dim,
+                    num_heads=num_heads,
+                    mlp_dim=mlp_dim,
+                    activation=activation,
+                    attention_downsample_rate=attention_downsample_rate,
+                    skip_first_layer_pe=(i == 0),
+                )
+            )
+
+        self.final_attn_token_to_image = Attention(
+            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
+        )
+        self.norm_final_attn = nn.LayerNorm(embedding_dim)
+
+    def forward(
+        self,
+        image_embedding: Tensor,
+        image_pe: Tensor,
+        point_embedding: Tensor,
+    ) -> Tuple[Tensor, Tensor]:
+        """
+        Args:
+          image_embedding (torch.Tensor): image to attend to. Should be shape
+            B x embedding_dim x h x w for any h and w.
+          image_pe (torch.Tensor): the positional encoding to add to the image. Must
+            have the same shape as image_embedding.
+          point_embedding (torch.Tensor): the embedding to add to the query points.
+            Must have shape B x N_points x embedding_dim for any N_points.
+
+        Returns:
+          torch.Tensor: the processed point_embedding
+          torch.Tensor: the processed image_embedding
+        """
+        # BxCxHxW -> BxHWxC == B x N_image_tokens x C
+        bs, c, h, w = image_embedding.shape
+        image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
+        image_pe = image_pe.flatten(2).permute(0, 2, 1)
+
+        # Prepare queries
+        queries = point_embedding
+        keys = image_embedding
+
+        # Apply transformer blocks and final layernorm
+        for layer in self.layers:
+            queries, keys = layer(
+                queries=queries,
+                keys=keys,
+                query_pe=point_embedding,
+                key_pe=image_pe,
+            )
+
+        # Apply the final attention layer from the points to the image
+        q = queries + point_embedding
+        k = keys + image_pe
+        attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
+        queries = queries + attn_out
+        queries = self.norm_final_attn(queries)
+
+        return queries, keys
+
+
+class TwoWayAttentionBlock(nn.Module):
+    def __init__(
+        self,
+        embedding_dim: int,
+        num_heads: int,
+        mlp_dim: int = 2048,
+        activation: Type[nn.Module] = nn.ReLU,
+        attention_downsample_rate: int = 2,
+        skip_first_layer_pe: bool = False,
+    ) -> None:
+        """
+        A transformer block with four layers: (1) self-attention of sparse
+        inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
+        block on sparse inputs, and (4) cross attention of dense inputs to sparse
+        inputs.
+
+        Arguments:
+          embedding_dim (int): the channel dimension of the embeddings
+          num_heads (int): the number of heads in the attention layers
+          mlp_dim (int): the hidden dimension of the mlp block
+          activation (nn.Module): the activation of the mlp block
+          skip_first_layer_pe (bool): skip the PE on the first layer
+        """
+        super().__init__()
+        self.self_attn = Attention(embedding_dim, num_heads)
+        self.norm1 = nn.LayerNorm(embedding_dim)
+
+        self.cross_attn_token_to_image = Attention(
+            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
+        )
+        self.norm2 = nn.LayerNorm(embedding_dim)
+
+        self.mlp = MLP(
+            embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation
+        )
+        self.norm3 = nn.LayerNorm(embedding_dim)
+
+        self.norm4 = nn.LayerNorm(embedding_dim)
+        self.cross_attn_image_to_token = Attention(
+            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
+        )
+
+        self.skip_first_layer_pe = skip_first_layer_pe
+
+    def forward(
+        self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
+    ) -> Tuple[Tensor, Tensor]:
+        # Self attention block
+        if self.skip_first_layer_pe:
+            queries = self.self_attn(q=queries, k=queries, v=queries)
+        else:
+            q = queries + query_pe
+            attn_out = self.self_attn(q=q, k=q, v=queries)
+            queries = queries + attn_out
+        queries = self.norm1(queries)
+
+        # Cross attention block, tokens attending to image embedding
+        q = queries + query_pe
+        k = keys + key_pe
+        attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
+        queries = queries + attn_out
+        queries = self.norm2(queries)
+
+        # MLP block
+        mlp_out = self.mlp(queries)
+        queries = queries + mlp_out
+        queries = self.norm3(queries)
+
+        # Cross attention block, image embedding attending to tokens
+        q = queries + query_pe
+        k = keys + key_pe
+        attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
+        keys = keys + attn_out
+        keys = self.norm4(keys)
+
+        return queries, keys
+
+
+class Attention(nn.Module):
+    """
+    An attention layer that allows for downscaling the size of the embedding
+    after projection to queries, keys, and values.
+    """
+
+    def __init__(
+        self,
+        embedding_dim: int,
+        num_heads: int,
+        downsample_rate: int = 1,
+        dropout: float = 0.0,
+        kv_in_dim: int = None,
+    ) -> None:
+        super().__init__()
+        self.embedding_dim = embedding_dim
+        self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
+        self.internal_dim = embedding_dim // downsample_rate
+        self.num_heads = num_heads
+        assert (
+            self.internal_dim % num_heads == 0
+        ), "num_heads must divide embedding_dim."
+
+        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
+        self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
+        self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
+        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
+
+        self.dropout_p = dropout
+
+    def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
+        b, n, c = x.shape
+        x = x.reshape(b, n, num_heads, c // num_heads)
+        return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head
+
+    def _recombine_heads(self, x: Tensor) -> Tensor:
+        b, n_heads, n_tokens, c_per_head = x.shape
+        x = x.transpose(1, 2)
+        return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C
+
+    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
+        # Input projections
+        q = self.q_proj(q)
+        k = self.k_proj(k)
+        v = self.v_proj(v)
+
+        # Separate into heads
+        q = self._separate_heads(q, self.num_heads)
+        k = self._separate_heads(k, self.num_heads)
+        v = self._separate_heads(v, self.num_heads)
+
+        dropout_p = self.dropout_p if self.training else 0.0
+        # Attention
+        try:
+            with sdp_kernel_context(dropout_p):
+                out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
+        except Exception as e:
+            # Fall back to all kernels if the Flash attention kernel fails
+            warnings.warn(
+                f"Flash Attention kernel failed due to: {e}\nFalling back to all available "
+                f"kernels for scaled_dot_product_attention (which may have a slower speed).",
+                category=UserWarning,
+                stacklevel=2,
+            )
+            global ALLOW_ALL_KERNELS
+            ALLOW_ALL_KERNELS = True
+            out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
+
+        out = self._recombine_heads(out)
+        out = self.out_proj(out)
+
+        return out
+
+
+class RoPEAttention(Attention):
+    """Attention with rotary position encoding."""
+
+    def __init__(
+        self,
+        *args,
+        rope_theta=10000.0,
+        # whether to repeat q rope to match k length
+        # this is needed for cross-attention to memories
+        rope_k_repeat=False,
+        feat_sizes=(32, 32),  # [w, h] for stride 16 feats at 512 resolution
+        **kwargs,
+    ):
+        super().__init__(*args, **kwargs)
+
+        self.compute_cis = partial(
+            compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta
+        )
+        freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
+        self.freqs_cis = freqs_cis
+        self.rope_k_repeat = rope_k_repeat
+
+    def forward(
+        self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0
+    ) -> Tensor:
+        # Input projections
+        q = self.q_proj(q)
+        k = self.k_proj(k)
+        v = self.v_proj(v)
+
+        # Separate into heads
+        q = self._separate_heads(q, self.num_heads)
+        k = self._separate_heads(k, self.num_heads)
+        v = self._separate_heads(v, self.num_heads)
+
+        # Apply rotary position encoding
+        w = h = math.sqrt(q.shape[-2])
+        self.freqs_cis = self.freqs_cis.to(q.device)
+        if self.freqs_cis.shape[0] != q.shape[-2]:
+            self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
+        if q.shape[-2] != k.shape[-2]:
+            assert self.rope_k_repeat
+
+        num_k_rope = k.size(-2) - num_k_exclude_rope
+        q, k[:, :, :num_k_rope] = apply_rotary_enc(
+            q,
+            k[:, :, :num_k_rope],
+            freqs_cis=self.freqs_cis,
+            repeat_freqs_k=self.rope_k_repeat,
+        )
+
+        dropout_p = self.dropout_p if self.training else 0.0
+        # Attention
+        try:
+            with sdp_kernel_context(dropout_p):
+                out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
+        except Exception as e:
+            # Fall back to all kernels if the Flash attention kernel fails
+            warnings.warn(
+                f"Flash Attention kernel failed due to: {e}\nFalling back to all available "
+                f"kernels for scaled_dot_product_attention (which may have a slower speed).",
+                category=UserWarning,
+                stacklevel=2,
+            )
+            global ALLOW_ALL_KERNELS
+            ALLOW_ALL_KERNELS = True
+            out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
+
+        out = self._recombine_heads(out)
+        out = self.out_proj(out)
+
+        return out
diff --git a/sam2/modeling/sam2_base.py b/sam2/modeling/sam2_base.py
new file mode 100644
index 0000000000000000000000000000000000000000..19ee315960c6de5ae12ff0cee0ee8d4605e85b70
--- /dev/null
+++ b/sam2/modeling/sam2_base.py
@@ -0,0 +1,943 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+import torch.distributed
+import torch.nn.functional as F
+
+from torch.nn.init import trunc_normal_
+
+from sam2.modeling.sam.mask_decoder import MaskDecoder
+from sam2.modeling.sam.prompt_encoder import PromptEncoder
+from sam2.modeling.sam.transformer import TwoWayTransformer
+from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames
+import pdb
+from fvcore.nn import FlopCountAnalysis
+# a large negative value as a placeholder score for missing objects
+NO_OBJ_SCORE = -1024.0
+
+
+class SAM2Base(torch.nn.Module):
+    def __init__(
+        self,
+        image_encoder,
+        memory_attention,
+        memory_encoder,
+        num_maskmem=7,  # default 1 input frame + 6 previous frames
+        image_size=512,
+        backbone_stride=16,  # stride of the image backbone output
+        sigmoid_scale_for_mem_enc=1.0,  # scale factor for mask sigmoid prob
+        sigmoid_bias_for_mem_enc=0.0,  # bias factor for mask sigmoid prob
+        # During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks
+        binarize_mask_from_pts_for_mem_enc=False,
+        use_mask_input_as_output_without_sam=False,  # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder
+        # The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit,
+        # we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model
+        # a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM.
+        max_cond_frames_in_attn=-1,
+        # on the first frame, whether to directly add the no-memory embedding to the image feature
+        # (instead of using the transformer encoder)
+        directly_add_no_mem_embed=False,
+        # whether to use high-resolution feature maps in the SAM mask decoder
+        use_high_res_features_in_sam=False,
+        # whether to output multiple (3) masks for the first click on initial conditioning frames
+        multimask_output_in_sam=False,
+        # the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`;
+        # default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points)
+        multimask_min_pt_num=1,
+        multimask_max_pt_num=1,
+        # whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`)
+        multimask_output_for_tracking=False,
+        # Whether to use multimask tokens for obj ptr; Only relevant when both
+        # use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True
+        use_multimask_token_for_obj_ptr: bool = False,
+        # whether to use sigmoid to restrict ious prediction to [0-1]
+        iou_prediction_use_sigmoid=False,
+        # The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5).
+        # For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of
+        # (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame.
+        memory_temporal_stride_for_eval=1,
+        # whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks)
+        non_overlap_masks_for_mem_enc=False,
+        # whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+        use_obj_ptrs_in_encoder=False,
+        # the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`)
+        max_obj_ptrs_in_encoder=16,
+        # whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`)
+        add_tpos_enc_to_obj_ptrs=True,
+        # whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference
+        # with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
+        proj_tpos_enc_in_obj_ptrs=False,
+        # whether to use signed distance (instead of unsigned absolute distance) in the temporal positional encoding in the object pointers
+        # (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
+        use_signed_tpos_enc_to_obj_ptrs=False,
+        # whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation
+        # (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking)
+        only_obj_ptrs_in_the_past_for_eval=False,
+        # Whether to predict if there is an object in the frame
+        pred_obj_scores: bool = False,
+        # Whether to use an MLP to predict object scores
+        pred_obj_scores_mlp: bool = False,
+        # Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True;
+        # Whether to have a fixed no obj pointer when there is no object present
+        # or to use it as an additive embedding with obj_ptr produced by decoder
+        fixed_no_obj_ptr: bool = False,
+        # Soft no object, i.e. mix in no_obj_ptr softly,
+        # hope to make recovery easier if there is a mistake and mitigate accumulation of errors
+        soft_no_obj_ptr: bool = False,
+        use_mlp_for_obj_ptr_proj: bool = False,
+        # add no obj embedding to spatial frames
+        no_obj_embed_spatial: bool = False,
+        # extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class.
+        sam_mask_decoder_extra_args=None,
+        compile_image_encoder: bool = False,
+    ):
+        super().__init__()
+        # Part 1: the image backbone
+        self.image_encoder = image_encoder
+        # Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting
+        self.use_high_res_features_in_sam = use_high_res_features_in_sam
+        self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
+        self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
+        self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
+        if use_obj_ptrs_in_encoder:
+            # A conv layer to downsample the mask prompt to stride 4 (the same stride as
+            # low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
+            # so that it can be fed into the SAM mask decoder to generate a pointer.
+            self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
+        self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
+        if proj_tpos_enc_in_obj_ptrs:
+            assert add_tpos_enc_to_obj_ptrs  # these options need to be used together
+        self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
+        self.use_signed_tpos_enc_to_obj_ptrs = use_signed_tpos_enc_to_obj_ptrs
+        self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval
+
+        # Part 2: memory attention to condition current frame's visual features
+        # with memories (and obj ptrs) from past frames
+        self.memory_attention = memory_attention
+        self.hidden_dim = image_encoder.neck.d_model
+
+        # Part 3: memory encoder for the previous frame's outputs
+        self.memory_encoder = memory_encoder
+        self.mem_dim = self.hidden_dim
+        if hasattr(self.memory_encoder, "out_proj") and hasattr(
+            self.memory_encoder.out_proj, "weight"
+        ):
+            # if there is compression of memories along channel dim
+            self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
+        self.num_maskmem = num_maskmem  # Number of memories accessible
+        # Temporal encoding of the memories
+        self.maskmem_tpos_enc = torch.nn.Parameter(
+            torch.zeros(num_maskmem, 1, 1, self.mem_dim)
+        )
+        trunc_normal_(self.maskmem_tpos_enc, std=0.02)
+        # a single token to indicate no memory embedding from previous frames
+        self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
+        self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
+        trunc_normal_(self.no_mem_embed, std=0.02)
+        trunc_normal_(self.no_mem_pos_enc, std=0.02)
+        self.directly_add_no_mem_embed = directly_add_no_mem_embed
+        # Apply sigmoid to the output raw mask logits (to turn them from
+        # range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
+        self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
+        self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
+        self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
+        self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
+        self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
+        # On frames with mask input, whether to directly output the input mask without
+        # using a SAM prompt encoder + mask decoder
+        self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
+        self.multimask_output_in_sam = multimask_output_in_sam
+        self.multimask_min_pt_num = multimask_min_pt_num
+        self.multimask_max_pt_num = multimask_max_pt_num
+        self.multimask_output_for_tracking = multimask_output_for_tracking
+        self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
+        self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid
+
+        # Part 4: SAM-style prompt encoder (for both mask and point inputs)
+        # and SAM-style mask decoder for the final mask output
+        self.image_size = image_size
+        self.backbone_stride = backbone_stride
+        self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
+        self.pred_obj_scores = pred_obj_scores
+        self.pred_obj_scores_mlp = pred_obj_scores_mlp
+        self.fixed_no_obj_ptr = fixed_no_obj_ptr
+        self.soft_no_obj_ptr = soft_no_obj_ptr
+        if self.fixed_no_obj_ptr:
+            assert self.pred_obj_scores
+            assert self.use_obj_ptrs_in_encoder
+        if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
+            self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
+            trunc_normal_(self.no_obj_ptr, std=0.02)
+        self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj
+        self.no_obj_embed_spatial = None
+        if no_obj_embed_spatial:
+            self.no_obj_embed_spatial = torch.nn.Parameter(torch.zeros(1, self.mem_dim))
+            trunc_normal_(self.no_obj_embed_spatial, std=0.02)
+
+        self._build_sam_heads()
+        self.max_cond_frames_in_attn = max_cond_frames_in_attn
+
+        # Model compilation
+        if compile_image_encoder:
+            # Compile the forward function (not the full module) to allow loading checkpoints.
+            print(
+                "Image encoder compilation is enabled. First forward pass will be slow."
+            )
+            self.image_encoder.forward = torch.compile(
+                self.image_encoder.forward,
+                mode="max-autotune",
+                fullgraph=True,
+                dynamic=False,
+            )
+
+    @property
+    def device(self):
+        return next(self.parameters()).device
+
+    def forward(self, *args, **kwargs):
+        raise NotImplementedError(
+            "Please use the corresponding methods in SAM2VideoPredictor for inference or SAM2Train for training/fine-tuning"
+            "See notebooks/video_predictor_example.ipynb for an inference example."
+        )
+
+    def _build_sam_heads(self):
+        """Build SAM-style prompt encoder and mask decoder."""
+        self.sam_prompt_embed_dim = self.hidden_dim
+        self.sam_image_embedding_size = self.image_size // self.backbone_stride
+
+        # build PromptEncoder and MaskDecoder from SAM
+        # (their hyperparameters like `mask_in_chans=16` are from SAM code)
+        self.sam_prompt_encoder = PromptEncoder(
+            embed_dim=self.sam_prompt_embed_dim,
+            image_embedding_size=(
+                self.sam_image_embedding_size,
+                self.sam_image_embedding_size,
+            ),
+            input_image_size=(self.image_size, self.image_size),
+            mask_in_chans=16,
+        )
+        self.sam_mask_decoder = MaskDecoder(
+            num_multimask_outputs=3,
+            transformer=TwoWayTransformer(
+                depth=2,
+                embedding_dim=self.sam_prompt_embed_dim,
+                mlp_dim=2048,
+                num_heads=8,
+            ),
+            transformer_dim=self.sam_prompt_embed_dim,
+            iou_head_depth=3,
+            iou_head_hidden_dim=256,
+            use_high_res_features=self.use_high_res_features_in_sam,
+            iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid,
+            pred_obj_scores=self.pred_obj_scores,
+            pred_obj_scores_mlp=self.pred_obj_scores_mlp,
+            use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr,
+            **(self.sam_mask_decoder_extra_args or {}),
+        )
+        if self.use_obj_ptrs_in_encoder:
+            # a linear projection on SAM output tokens to turn them into object pointers
+            self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
+            if self.use_mlp_for_obj_ptr_proj:
+                self.obj_ptr_proj = MLP(
+                    self.hidden_dim, self.hidden_dim, self.hidden_dim, 3
+                )
+        else:
+            self.obj_ptr_proj = torch.nn.Identity()
+        if self.proj_tpos_enc_in_obj_ptrs:
+            # a linear projection on temporal positional encoding in object pointers to
+            # avoid potential interference with spatial positional encoding
+            self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
+        else:
+            self.obj_ptr_tpos_proj = torch.nn.Identity()
+
+    def _forward_sam_heads(
+        self,
+        backbone_features,
+        point_inputs=None,
+        mask_inputs=None,
+        high_res_features=None,
+        multimask_output=False,
+    ):
+        """
+        Forward SAM prompt encoders and mask heads.
+
+        Inputs:
+        - backbone_features: image features of [B, C, H, W] shape
+        - point_inputs: a dictionary with "point_coords" and "point_labels", where
+          1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the
+             absolute pixel-unit coordinate in (x, y) format of the P input points
+          2) "point_labels" has shape [B, P] and int32 dtype, where 1 means
+             positive clicks, 0 means negative clicks, and -1 means padding
+        - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the
+          same spatial size as the image.
+        - high_res_features: either 1) None or 2) or a list of length 2 containing
+          two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively,
+          which will be used as high-resolution feature maps for SAM decoder.
+        - multimask_output: if it's True, we output 3 candidate masks and their 3
+          corresponding IoU estimates, and if it's False, we output only 1 mask and
+          its corresponding IoU estimate.
+
+        Outputs:
+        - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if
+          `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM
+          output mask logits (before sigmoid) for the low-resolution masks, with 4x
+          the resolution (1/4 stride) of the input backbone_features.
+        - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3
+          if `multimask_output=True` and M = 1 if `multimask_output=False`),
+          upsampled from the low-resolution masks, with shape size as the image
+          (stride is 1 pixel).
+        - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1
+          if `multimask_output=False`), the estimated IoU of each output mask.
+        - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`.
+          If `multimask_output=True`, it's the mask with the highest IoU estimate.
+          If `multimask_output=False`, it's the same as `low_res_multimasks`.
+        - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`.
+          If `multimask_output=True`, it's the mask with the highest IoU estimate.
+          If `multimask_output=False`, it's the same as `high_res_multimasks`.
+        - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted
+          based on the output token from the SAM mask decoder.
+        """
+        B = backbone_features.size(0)
+        device = backbone_features.device
+        assert backbone_features.size(1) == self.sam_prompt_embed_dim
+        assert backbone_features.size(2) == self.sam_image_embedding_size
+        assert backbone_features.size(3) == self.sam_image_embedding_size
+
+        # a) Handle point prompts
+        if point_inputs is not None:
+            sam_point_coords = point_inputs["point_coords"]
+            sam_point_labels = point_inputs["point_labels"]
+            assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
+        else:
+            # If no points are provide, pad with an empty point (with label -1)
+            sam_point_coords = torch.zeros(B, 1, 2, device=device)
+            sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
+
+        # b) Handle mask prompts
+        if mask_inputs is not None:
+            # If mask_inputs is provided, downsize it into low-res mask input if needed
+            # and feed it as a dense mask prompt into the SAM mask encoder
+            assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
+            if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
+                sam_mask_prompt = F.interpolate(
+                    mask_inputs.float(),
+                    size=self.sam_prompt_encoder.mask_input_size,
+                    align_corners=False,
+                    mode="bilinear",
+                    antialias=True,  # use antialias for downsampling
+                )
+            else:
+                sam_mask_prompt = mask_inputs
+        else:
+            # Otherwise, simply feed None (and SAM's prompt encoder will add
+            # a learned `no_mask_embed` to indicate no mask input in this case).
+            sam_mask_prompt = None
+
+        sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
+            points=(sam_point_coords, sam_point_labels),
+            boxes=None,
+            masks=sam_mask_prompt,
+        )
+    
+
+
+        (
+            low_res_multimasks,
+            ious,
+            sam_output_tokens,
+            object_score_logits,
+        ) = self.sam_mask_decoder(
+            image_embeddings=backbone_features,
+            image_pe=self.sam_prompt_encoder.get_dense_pe(),
+            sparse_prompt_embeddings=sparse_embeddings,
+            dense_prompt_embeddings=dense_embeddings,
+            multimask_output=multimask_output,
+            repeat_image=False,  # the image is already batched
+            high_res_features=high_res_features,
+        )
+        if self.pred_obj_scores:
+            is_obj_appearing = object_score_logits > 0
+
+            # Mask used for spatial memories is always a *hard* choice between obj and no obj,
+            # consistent with the actual mask prediction
+            low_res_multimasks = torch.where(
+                is_obj_appearing[:, None, None],
+                low_res_multimasks,
+                NO_OBJ_SCORE,
+            )
+
+        # convert masks from possibly bfloat16 (or float16) to float32
+        # (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
+        low_res_multimasks = low_res_multimasks.float()
+        high_res_multimasks = F.interpolate(
+            low_res_multimasks,
+            size=(self.image_size, self.image_size),
+            mode="bilinear",
+            align_corners=False,
+        )
+
+        sam_output_token = sam_output_tokens[:, 0]
+        if multimask_output:
+            # take the best mask prediction (with the highest IoU estimation)
+            best_iou_inds = torch.argmax(ious, dim=-1)
+            batch_inds = torch.arange(B, device=device)
+            low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
+            high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
+            if sam_output_tokens.size(1) > 1:
+                sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
+        else:
+            low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
+
+        # Extract object pointer from the SAM output token (with occlusion handling)
+        obj_ptr = self.obj_ptr_proj(sam_output_token)
+        if self.pred_obj_scores:
+            # Allow *soft* no obj ptr, unlike for masks
+            if self.soft_no_obj_ptr:
+                lambda_is_obj_appearing = object_score_logits.sigmoid()
+            else:
+                lambda_is_obj_appearing = is_obj_appearing.float()
+
+            if self.fixed_no_obj_ptr:
+                obj_ptr = lambda_is_obj_appearing * obj_ptr
+            obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
+
+
+        #######SAM2Long########
+        obj_ptrs = self.obj_ptr_proj(sam_output_tokens)
+        lambda_is_obj_appearing = is_obj_appearing.float()[:, None]
+        obj_ptrs = lambda_is_obj_appearing * obj_ptrs
+        obj_ptrs = obj_ptrs + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
+
+
+        return (
+            low_res_multimasks,
+            high_res_multimasks,
+            ious,
+            low_res_masks,
+            high_res_masks,
+            obj_ptr,
+            object_score_logits,
+            obj_ptrs,
+        )
+
+    def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
+        """
+        Directly turn binary `mask_inputs` into a output mask logits without using SAM.
+        (same input and output shapes as in _forward_sam_heads above).
+        """
+        # Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
+        out_scale, out_bias = 20.0, -10.0  # sigmoid(-10.0)=4.5398e-05
+        mask_inputs_float = mask_inputs.float()
+        high_res_masks = mask_inputs_float * out_scale + out_bias
+        low_res_masks = F.interpolate(
+            high_res_masks,
+            size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4),
+            align_corners=False,
+            mode="bilinear",
+            antialias=True,  # use antialias for downsampling
+        )
+        # a dummy IoU prediction of all 1's under mask input
+        ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
+        if not self.use_obj_ptrs_in_encoder:
+            # all zeros as a dummy object pointer (of shape [B, C])
+            obj_ptr = torch.zeros(
+                mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device
+            )
+        else:
+            # produce an object pointer using the SAM decoder from the mask input
+            _, _, _, _, _, obj_ptr, _, _ = self._forward_sam_heads(
+                backbone_features=backbone_features,
+                mask_inputs=self.mask_downsample(mask_inputs_float),
+                high_res_features=high_res_features,
+            )
+        # In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
+        # Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
+        # on the object_scores from the SAM decoder.
+        is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
+        is_obj_appearing = is_obj_appearing[..., None]
+        lambda_is_obj_appearing = is_obj_appearing.float()
+        object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
+        if self.pred_obj_scores:
+            if self.fixed_no_obj_ptr:
+                obj_ptr = lambda_is_obj_appearing * obj_ptr
+            obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
+
+        return (
+            low_res_masks,
+            high_res_masks,
+            ious,
+            low_res_masks,
+            high_res_masks,
+            obj_ptr,
+            object_score_logits,
+            None,
+        )
+
+    def forward_image(self, img_batch: torch.Tensor):
+        """Get the image feature on the input batch."""
+        backbone_out = self.image_encoder(img_batch)
+        if self.use_high_res_features_in_sam:
+            # precompute projected level 0 and level 1 features in SAM decoder
+            # to avoid running it again on every SAM click
+            backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
+                backbone_out["backbone_fpn"][0]
+            )
+            backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
+                backbone_out["backbone_fpn"][1]
+            )
+        return backbone_out
+
+    def _prepare_backbone_features(self, backbone_out):
+        """Prepare and flatten visual features."""
+        backbone_out = backbone_out.copy()
+        assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
+        assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels
+
+        feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
+        vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]
+
+        feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
+        # flatten NxCxHxW to HWxNxC
+        vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
+        vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]
+
+        return backbone_out, vision_feats, vision_pos_embeds, feat_sizes
+
+    def _prepare_memory_conditioned_features(
+        self,
+        frame_idx,
+        is_init_cond_frame,
+        current_vision_feats,
+        current_vision_pos_embeds,
+        feat_sizes,
+        output_dict,
+        num_frames,
+        track_in_reverse=False,  # tracking in reverse time order (for demo usage)
+        mem_pick_index=0,
+        start_frame_idx=0,
+        iou_thre=0.1,
+    ):
+        """Fuse the current frame's visual feature map with previous memory."""
+        B = current_vision_feats[-1].size(1)  # batch size on this frame
+        C = self.hidden_dim
+        H, W = feat_sizes[-1]  # top-level (lowest-resolution) feature size
+        device = current_vision_feats[-1].device
+        # The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
+        # In this case, we skip the fusion with any memory.
+        if self.num_maskmem == 0:  # Disable memory and skip fusion
+            pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
+            return pix_feat
+
+        num_obj_ptr_tokens = 0
+        tpos_sign_mul = -1 if track_in_reverse else 1
+        # Step 1: condition the visual features of the current frame on previous memories
+        if not is_init_cond_frame:
+            # Retrieve the memories encoded with the maskmem backbone
+            to_cat_memory, to_cat_memory_pos_embed = [], []
+            # Add conditioning frames's output first (all cond frames have t_pos=0 for
+            # when getting temporal positional embedding below)
+            assert len(output_dict["cond_frame_outputs"]) > 0
+            # Select a maximum number of temporally closest cond frames for cross attention
+            cond_outputs = output_dict["cond_frame_outputs"]
+            selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
+                frame_idx, cond_outputs, self.max_cond_frames_in_attn
+            )
+            t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
+            # Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
+            # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
+            # We also allow taking the memory frame non-consecutively (with stride>1), in which case
+            # we take (self.num_maskmem - 2) frames among every stride-th frames plus the last frame.
+            stride = 1 if self.training else self.memory_temporal_stride_for_eval
+            
+            max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
+            num_object = int(cond_outputs[start_frame_idx]['obj_ptr'].shape[0]) ##always one
+
+
+            if frame_idx <= start_frame_idx+1 or mem_pick_index==0:
+                valid_indices = []
+            else:
+                valid_indices = []
+                for i in range(frame_idx - 1, start_frame_idx, -1):
+                    object_score = output_dict["non_cond_frame_outputs"][i]['object_score_logits'][...,mem_pick_index[i]]
+                    iou = output_dict["non_cond_frame_outputs"][i]['ious'][...,mem_pick_index[i]]
+                    # print("threshold", iou_thre)
+                    if iou.item() > iou_thre and object_score.item() > 0:
+                        valid_indices.insert(0, i)
+                    if len(valid_indices) >= max_obj_ptrs_in_encoder - 1:
+                        break
+                if frame_idx - 1 not in valid_indices: ##pick last frame
+                    valid_indices.append(frame_idx-1)
+                
+            prev_idxs = [start_frame_idx]
+            for t_pos in range(1, self.num_maskmem):
+                idx = t_pos - self.num_maskmem
+                if idx < -len(valid_indices):
+                    continue
+                out = output_dict["non_cond_frame_outputs"].get(valid_indices[idx], None)
+                if out is None:
+                    out = unselected_cond_outputs.get(valid_indices[idx], None)
+                t_pos_and_prevs.append((t_pos, out))
+                prev_idxs.append(valid_indices[idx])
+            
+            object_frame_score = [torch.ones(num_object).to(cond_outputs[start_frame_idx]['obj_ptr'].device, torch.bfloat16)*10]
+            for (t_pos, prev), prev_idx in zip(t_pos_and_prevs, prev_idxs):
+                if prev is None:
+                    continue  # skip padding frames
+                # "maskmem_features" might have been offloaded to CPU in demo use cases,
+                # so we load it back to GPU (it's a no-op if it's already on GPU).
+                if t_pos > 0 and mem_pick_index != 0:
+                    object_frame_score.append(prev["object_score_logits"][...,mem_pick_index[prev_idx]].view(-1))
+                    feats = prev["maskmem_features"][...,mem_pick_index[prev_idx]].to(device, non_blocking=True)
+                else:
+                    feats = prev["maskmem_features"].to(device, non_blocking=True)
+                to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
+                # Spatial positional encoding (it might have been offloaded to CPU in eval)
+                maskmem_enc = prev["maskmem_pos_enc"][-1].to(device)
+                maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
+                # Temporal positional encoding
+                maskmem_enc = (
+                    maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
+                )
+                to_cat_memory_pos_embed.append(maskmem_enc)
+            
+            # Construct the list of past object pointers
+            if self.use_obj_ptrs_in_encoder:
+                max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
+                # First add those object pointers from selected conditioning frames
+                # (optionally, only include object pointers in the past during evaluation)
+                if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
+                    ptr_cond_outputs = {
+                        t: out
+                        for t, out in selected_cond_outputs.items()
+                        if (t >= frame_idx if track_in_reverse else t <= frame_idx)
+                    }
+                else:
+                    ptr_cond_outputs = selected_cond_outputs
+                pos_and_ptrs = [
+                    # Temporal pos encoding contains how far away each pointer is from current frame
+                    (abs(frame_idx - t), out["obj_ptr"])
+                    for t, out in ptr_cond_outputs.items()
+                ]
+                # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
+                object_ptr_score = [torch.ones(num_object).to(cond_outputs[start_frame_idx]['obj_ptr'].device, torch.bfloat16)*10]
+                for t_diff in range(1, max_obj_ptrs_in_encoder):
+                    if -t_diff <= -len(valid_indices):
+                        break
+                    out = output_dict["non_cond_frame_outputs"].get(
+                    valid_indices[-t_diff], unselected_cond_outputs.get(valid_indices[-t_diff], None))
+                    if out is not None:
+                        mem_idx = mem_pick_index[valid_indices[-t_diff]]
+                        object_ptr_score.append(out['object_score_logits'][...,mem_idx].view(-1))
+                        pos_and_ptrs.append((t_diff, out["obj_ptr"][...,mem_idx]))
+                # object_ptr_score.append(output_dict["non_cond_frame_outputs"][valid_indices[-t_diff]]['object_score'].item())
+                # If we have at least one object pointer, add them to the across attention
+                if len(pos_and_ptrs) > 0:
+                    pos_list, ptrs_list = zip(*pos_and_ptrs)
+                    # stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
+                    obj_ptrs = torch.stack(ptrs_list, dim=0)
+                    # a temporal positional embedding based on how far each object pointer is from
+                    # the current frame (sine embedding normalized by the max pointer num).
+                    if self.add_tpos_enc_to_obj_ptrs:
+                        t_diff_max = max_obj_ptrs_in_encoder - 1
+                        tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
+                        obj_pos = torch.tensor(pos_list, device=device)
+                        obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
+                        obj_pos = self.obj_ptr_tpos_proj(obj_pos)
+                        obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
+                    else:
+                        obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
+                    if self.mem_dim < C:
+                        # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
+                        obj_ptrs = obj_ptrs.reshape(
+                            -1, B, C // self.mem_dim, self.mem_dim
+                        )
+                        obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
+                        obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
+                    to_cat_memory.append(obj_ptrs)
+                    to_cat_memory_pos_embed.append(obj_pos)
+                    num_obj_ptr_tokens = obj_ptrs.shape[0]
+                else:
+                    num_obj_ptr_tokens = 0
+        else:
+            # for initial conditioning frames, encode them without using any previous memory
+            if self.directly_add_no_mem_embed:
+                # directly add no-mem embedding (instead of using the transformer encoder)
+                pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
+                pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
+                return pix_feat_with_mem
+
+            # Use a dummy token on the first frame (to avoid empty memory input to tranformer encoder)
+            to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
+            to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]
+
+        # Step 2: Concatenate the memories and forward through the transformer encoder
+        memory = torch.cat(to_cat_memory, dim=0)
+        memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)
+
+        pix_feat_with_mem = self.memory_attention(
+            curr=current_vision_feats,
+            curr_pos=current_vision_pos_embeds,
+            memory=memory,
+            memory_pos=memory_pos_embed,
+            num_obj_ptr_tokens=num_obj_ptr_tokens,
+            object_frame_scores=object_frame_score,
+            object_ptr_scores=object_ptr_score,
+        )
+        # reshape the output (HW)BC => BCHW
+        pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
+
+        return pix_feat_with_mem
+
+    def _encode_new_memory(
+        self,
+        current_vision_feats,
+        feat_sizes,
+        pred_masks_high_res,
+        object_score_logits,
+        is_mask_from_pts,
+    ):
+        """Encode the current image and its prediction into a memory feature."""
+        B = current_vision_feats[-1].size(1)  # batch size on this frame
+        C = self.hidden_dim
+        H, W = feat_sizes[-1]  # top-level (lowest-resolution) feature size
+        # top-level feature, (HW)BC => BCHW
+        pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
+        if self.non_overlap_masks_for_mem_enc and not self.training:
+            # optionally, apply non-overlapping constraints to the masks (it's applied
+            # in the batch dimension and should only be used during eval, where all
+            # the objects come from the same video under batch size 1).
+            pred_masks_high_res = self._apply_non_overlapping_constraints(
+                pred_masks_high_res
+            )
+        # scale the raw mask logits with a temperature before applying sigmoid
+        binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
+        if binarize and not self.training:
+            mask_for_mem = (pred_masks_high_res > 0).float()
+        else:
+            # apply sigmoid on the raw mask logits to turn them into range (0, 1)
+            mask_for_mem = torch.sigmoid(pred_masks_high_res)
+        # apply scale and bias terms to the sigmoid probabilities
+        if self.sigmoid_scale_for_mem_enc != 1.0:
+            mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
+        if self.sigmoid_bias_for_mem_enc != 0.0:
+            mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
+        
+        maskmem_out = self.memory_encoder(
+            pix_feat, mask_for_mem, skip_mask_sigmoid=True  # sigmoid already applied
+        )
+        maskmem_features = maskmem_out["vision_features"]
+        maskmem_pos_enc = maskmem_out["vision_pos_enc"]
+        # add a no-object embedding to the spatial memory to indicate that the frame
+        # is predicted to be occluded (i.e. no object is appearing in the frame)
+        if self.no_obj_embed_spatial is not None:
+            is_obj_appearing = (object_score_logits > 0).float()
+            maskmem_features += (
+                1 - is_obj_appearing[..., None, None]
+            ) * self.no_obj_embed_spatial[..., None, None].expand(
+                *maskmem_features.shape
+            )
+
+        return maskmem_features, maskmem_pos_enc
+
+    def _track_step(
+        self,
+        frame_idx,
+        is_init_cond_frame,
+        current_vision_feats,
+        current_vision_pos_embeds,
+        feat_sizes,
+        point_inputs,
+        mask_inputs,
+        output_dict,
+        num_frames,
+        track_in_reverse,
+        prev_sam_mask_logits,
+        mem_pick_index=0,
+        start_frame_idx=0,
+        iou_thre=0.1,
+    ):
+        current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
+        # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
+        if len(current_vision_feats) > 1:
+            high_res_features = [
+                x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
+                for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
+            ]
+        else:
+            high_res_features = None
+        if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
+            # When use_mask_input_as_output_without_sam=True, we directly output the mask input
+            # (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
+            pix_feat = current_vision_feats[-1].permute(1, 2, 0)
+            pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
+            sam_outputs = self._use_mask_as_output(
+                pix_feat, high_res_features, mask_inputs
+            )
+        else:
+            # fused the visual feature with previous memory features in the memory bank
+            pix_feat = self._prepare_memory_conditioned_features(
+                frame_idx=frame_idx,
+                is_init_cond_frame=is_init_cond_frame,
+                current_vision_feats=current_vision_feats[-1:],
+                current_vision_pos_embeds=current_vision_pos_embeds[-1:],
+                feat_sizes=feat_sizes[-1:],
+                output_dict=output_dict,
+                num_frames=num_frames,
+                track_in_reverse=track_in_reverse,
+                mem_pick_index=mem_pick_index,
+                start_frame_idx=start_frame_idx,
+                iou_thre=iou_thre,
+            )
+            # apply SAM-style segmentation head
+            # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
+            # e.g. in demo where such logits come from earlier interaction instead of correction sampling
+            # (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
+            if prev_sam_mask_logits is not None:
+                assert point_inputs is not None and mask_inputs is None
+                mask_inputs = prev_sam_mask_logits
+            multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
+            sam_outputs = self._forward_sam_heads(
+                backbone_features=pix_feat,
+                point_inputs=point_inputs,
+                mask_inputs=mask_inputs,
+                high_res_features=high_res_features,
+                multimask_output=multimask_output,
+            )
+
+        return current_out, sam_outputs, high_res_features, pix_feat
+
+    def _encode_memory_in_output(
+        self,
+        current_vision_feats,
+        feat_sizes,
+        point_inputs,
+        run_mem_encoder,
+        high_res_masks,
+        object_score_logits,
+        current_out,
+    ):
+        if run_mem_encoder and self.num_maskmem > 0:
+            high_res_masks_for_mem_enc = high_res_masks
+            maskmem_features, maskmem_pos_enc = self._encode_new_memory(
+                current_vision_feats=current_vision_feats,
+                feat_sizes=feat_sizes,
+                pred_masks_high_res=high_res_masks_for_mem_enc,
+                object_score_logits=object_score_logits,
+                is_mask_from_pts=(point_inputs is not None),
+            )
+            current_out["maskmem_features"] = maskmem_features
+            current_out["maskmem_pos_enc"] = maskmem_pos_enc
+        else:
+            current_out["maskmem_features"] = None
+            current_out["maskmem_pos_enc"] = None
+
+    def track_step(
+        self,
+        frame_idx,
+        is_init_cond_frame,
+        current_vision_feats,
+        current_vision_pos_embeds,
+        feat_sizes,
+        point_inputs,
+        mask_inputs,
+        output_dict,
+        num_frames,
+        track_in_reverse=False,  # tracking in reverse time order (for demo usage)
+        # Whether to run the memory encoder on the predicted masks. Sometimes we might want
+        # to skip the memory encoder with `run_mem_encoder=False`. For example,
+        # in demo we might call `track_step` multiple times for each user click,
+        # and only encode the memory when the user finalizes their clicks. And in ablation
+        # settings like SAM training on static images, we don't need the memory encoder.
+        run_mem_encoder=True,
+        # The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
+        prev_sam_mask_logits=None,
+        mem_pick_index=0,
+        start_frame_idx=0,
+        iou_thre=0.1,
+    ):
+        current_out, sam_outputs, _, _ = self._track_step(
+            frame_idx,
+            is_init_cond_frame,
+            current_vision_feats,
+            current_vision_pos_embeds,
+            feat_sizes,
+            point_inputs,
+            mask_inputs,
+            output_dict,
+            num_frames,
+            track_in_reverse,
+            prev_sam_mask_logits,
+            mem_pick_index,
+            start_frame_idx,
+            iou_thre,
+        )
+
+        (
+            low_res_multimasks,
+            high_res_multimasks,
+            ious,
+            low_res_masks,
+            high_res_masks,
+            obj_ptr,
+            object_score_logits,
+            obj_ptrs,
+        ) = sam_outputs
+
+
+        if mem_pick_index == 0: 
+            current_out["pred_masks"] = low_res_masks
+            current_out["ious"] = ious.max(-1)[0]
+            current_out["object_score"] = object_score_logits[:,0]
+            current_out["obj_ptr"] = obj_ptr
+            current_out["pred_masks_high_res"] = high_res_masks
+        else:
+            current_out["pred_masks"] = low_res_multimasks
+            current_out["ious"] = ious
+            current_out["object_score"] = object_score_logits[:,0]
+            current_out["obj_ptr"] = obj_ptrs
+            current_out["pred_masks_high_res"] = high_res_multimasks
+        
+        
+            
+
+        if not self.training:
+            # Only add this in inference (to avoid unused param in activation checkpointing;
+            # it's mainly used in the demo to encode spatial memories w/ consolidated masks)
+            current_out["object_score_logits"] = object_score_logits
+
+
+        return current_out
+
+    def _use_multimask(self, is_init_cond_frame, point_inputs):
+        """Whether to use multimask output in the SAM head."""
+        num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
+        multimask_output = (
+            self.multimask_output_in_sam
+            and (is_init_cond_frame or self.multimask_output_for_tracking)
+            and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
+        )
+        return multimask_output
+
+    def _apply_non_overlapping_constraints(self, pred_masks):
+        """
+        Apply non-overlapping constraints to the object scores in pred_masks. Here we
+        keep only the highest scoring object at each spatial location in pred_masks.
+        """
+        batch_size = pred_masks.size(0)
+        if batch_size == 1:
+            return pred_masks
+
+        device = pred_masks.device
+        # "max_obj_inds": object index of the object with the highest score at each location
+        max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
+        # "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
+        batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
+        keep = max_obj_inds == batch_obj_inds
+        # suppress overlapping regions' scores below -10.0 so that the foreground regions
+        # don't overlap (here sigmoid(-10.0)=4.5398e-05)
+        pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
+        return pred_masks
\ No newline at end of file
diff --git a/sam2/modeling/sam2_utils.py b/sam2/modeling/sam2_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..e16caae3a9a49e451b2d03d1ee60c47f8e9ed23c
--- /dev/null
+++ b/sam2/modeling/sam2_utils.py
@@ -0,0 +1,323 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import copy
+from typing import Tuple
+
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from sam2.utils.misc import mask_to_box
+
+
+def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
+    """
+    Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs`
+    that are temporally closest to the current frame at `frame_idx`. Here, we take
+    - a) the closest conditioning frame before `frame_idx` (if any);
+    - b) the closest conditioning frame after `frame_idx` (if any);
+    - c) any other temporally closest conditioning frames until reaching a total
+         of `max_cond_frame_num` conditioning frames.
+
+    Outputs:
+    - selected_outputs: selected items (keys & values) from `cond_frame_outputs`.
+    - unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`.
+    """
+    if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
+        selected_outputs = cond_frame_outputs
+        unselected_outputs = {}
+    else:
+        assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
+        selected_outputs = {}
+
+        # the closest conditioning frame before `frame_idx` (if any)
+        idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
+        if idx_before is not None:
+            selected_outputs[idx_before] = cond_frame_outputs[idx_before]
+
+        # the closest conditioning frame after `frame_idx` (if any)
+        idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
+        if idx_after is not None:
+            selected_outputs[idx_after] = cond_frame_outputs[idx_after]
+
+        # add other temporally closest conditioning frames until reaching a total
+        # of `max_cond_frame_num` conditioning frames.
+        num_remain = max_cond_frame_num - len(selected_outputs)
+        inds_remain = sorted(
+            (t for t in cond_frame_outputs if t not in selected_outputs),
+            key=lambda x: abs(x - frame_idx),
+        )[:num_remain]
+        selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
+        unselected_outputs = {
+            t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs
+        }
+
+    return selected_outputs, unselected_outputs
+
+
+def get_1d_sine_pe(pos_inds, dim, temperature=10000):
+    """
+    Get 1D sine positional embedding as in the original Transformer paper.
+    """
+    pe_dim = dim // 2
+    dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
+    dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
+
+    pos_embed = pos_inds.unsqueeze(-1) / dim_t
+    pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
+    return pos_embed
+
+
+def get_activation_fn(activation):
+    """Return an activation function given a string"""
+    if activation == "relu":
+        return F.relu
+    if activation == "gelu":
+        return F.gelu
+    if activation == "glu":
+        return F.glu
+    raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
+
+
+def get_clones(module, N):
+    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
+
+
+class DropPath(nn.Module):
+    # adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
+    def __init__(self, drop_prob=0.0, scale_by_keep=True):
+        super(DropPath, self).__init__()
+        self.drop_prob = drop_prob
+        self.scale_by_keep = scale_by_keep
+
+    def forward(self, x):
+        if self.drop_prob == 0.0 or not self.training:
+            return x
+        keep_prob = 1 - self.drop_prob
+        shape = (x.shape[0],) + (1,) * (x.ndim - 1)
+        random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
+        if keep_prob > 0.0 and self.scale_by_keep:
+            random_tensor.div_(keep_prob)
+        return x * random_tensor
+
+
+# Lightly adapted from
+# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
+class MLP(nn.Module):
+    def __init__(
+        self,
+        input_dim: int,
+        hidden_dim: int,
+        output_dim: int,
+        num_layers: int,
+        activation: nn.Module = nn.ReLU,
+        sigmoid_output: bool = False,
+    ) -> None:
+        super().__init__()
+        self.num_layers = num_layers
+        h = [hidden_dim] * (num_layers - 1)
+        self.layers = nn.ModuleList(
+            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
+        )
+        self.sigmoid_output = sigmoid_output
+        self.act = activation()
+
+    def forward(self, x):
+        for i, layer in enumerate(self.layers):
+            x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
+        if self.sigmoid_output:
+            x = F.sigmoid(x)
+        return x
+
+
+# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
+# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119  # noqa
+class LayerNorm2d(nn.Module):
+    def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
+        super().__init__()
+        self.weight = nn.Parameter(torch.ones(num_channels))
+        self.bias = nn.Parameter(torch.zeros(num_channels))
+        self.eps = eps
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        u = x.mean(1, keepdim=True)
+        s = (x - u).pow(2).mean(1, keepdim=True)
+        x = (x - u) / torch.sqrt(s + self.eps)
+        x = self.weight[:, None, None] * x + self.bias[:, None, None]
+        return x
+
+
+def sample_box_points(
+    masks: torch.Tensor,
+    noise: float = 0.1,  # SAM default
+    noise_bound: int = 20,  # SAM default
+    top_left_label: int = 2,
+    bottom_right_label: int = 3,
+) -> Tuple[np.array, np.array]:
+    """
+    Sample a noised version of the top left and bottom right corners of a given `bbox`
+
+    Inputs:
+    - masks: [B, 1, H,W] boxes, dtype=torch.Tensor
+    - noise: noise as a fraction of box width and height, dtype=float
+    - noise_bound: maximum amount of noise (in pure pixesl), dtype=int
+
+    Returns:
+    - box_coords: [B, num_pt, 2], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.float
+    - box_labels: [B, num_pt], label 2 is reserverd for top left and 3 for bottom right corners, dtype=torch.int32
+    """
+    device = masks.device
+    box_coords = mask_to_box(masks)
+    B, _, H, W = masks.shape
+    box_labels = torch.tensor(
+        [top_left_label, bottom_right_label], dtype=torch.int, device=device
+    ).repeat(B)
+    if noise > 0.0:
+        if not isinstance(noise_bound, torch.Tensor):
+            noise_bound = torch.tensor(noise_bound, device=device)
+        bbox_w = box_coords[..., 2] - box_coords[..., 0]
+        bbox_h = box_coords[..., 3] - box_coords[..., 1]
+        max_dx = torch.min(bbox_w * noise, noise_bound)
+        max_dy = torch.min(bbox_h * noise, noise_bound)
+        box_noise = 2 * torch.rand(B, 1, 4, device=device) - 1
+        box_noise = box_noise * torch.stack((max_dx, max_dy, max_dx, max_dy), dim=-1)
+
+        box_coords = box_coords + box_noise
+        img_bounds = (
+            torch.tensor([W, H, W, H], device=device) - 1
+        )  # uncentered pixel coords
+        box_coords.clamp_(torch.zeros_like(img_bounds), img_bounds)  # In place clamping
+
+    box_coords = box_coords.reshape(-1, 2, 2)  # always 2 points
+    box_labels = box_labels.reshape(-1, 2)
+    return box_coords, box_labels
+
+
+def sample_random_points_from_errors(gt_masks, pred_masks, num_pt=1):
+    """
+    Sample `num_pt` random points (along with their labels) independently from the error regions.
+
+    Inputs:
+    - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
+    - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
+    - num_pt: int, number of points to sample independently for each of the B error maps
+
+    Outputs:
+    - points: [B, num_pt, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
+    - labels: [B, num_pt], dtype=torch.int32, where 1 means positive clicks and 0 means
+      negative clicks
+    """
+    if pred_masks is None:  # if pred_masks is not provided, treat it as empty
+        pred_masks = torch.zeros_like(gt_masks)
+    assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
+    assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
+    assert num_pt >= 0
+
+    B, _, H_im, W_im = gt_masks.shape
+    device = gt_masks.device
+
+    # false positive region, a new point sampled in this region should have
+    # negative label to correct the FP error
+    fp_masks = ~gt_masks & pred_masks
+    # false negative region, a new point sampled in this region should have
+    # positive label to correct the FN error
+    fn_masks = gt_masks & ~pred_masks
+    # whether the prediction completely match the ground-truth on each mask
+    all_correct = torch.all((gt_masks == pred_masks).flatten(2), dim=2)
+    all_correct = all_correct[..., None, None]
+
+    # channel 0 is FP map, while channel 1 is FN map
+    pts_noise = torch.rand(B, num_pt, H_im, W_im, 2, device=device)
+    # sample a negative new click from FP region or a positive new click
+    # from FN region, depend on where the maximum falls,
+    # and in case the predictions are all correct (no FP or FN), we just
+    # sample a negative click from the background region
+    pts_noise[..., 0] *= fp_masks | (all_correct & ~gt_masks)
+    pts_noise[..., 1] *= fn_masks
+    pts_idx = pts_noise.flatten(2).argmax(dim=2)
+    labels = (pts_idx % 2).to(torch.int32)
+    pts_idx = pts_idx // 2
+    pts_x = pts_idx % W_im
+    pts_y = pts_idx // W_im
+    points = torch.stack([pts_x, pts_y], dim=2).to(torch.float)
+    return points, labels
+
+
+def sample_one_point_from_error_center(gt_masks, pred_masks, padding=True):
+    """
+    Sample 1 random point (along with its label) from the center of each error region,
+    that is, the point with the largest distance to the boundary of each error region.
+    This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py
+
+    Inputs:
+    - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
+    - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
+    - padding: if True, pad with boundary of 1 px for distance transform
+
+    Outputs:
+    - points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
+    - labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks
+    """
+    import cv2
+
+    if pred_masks is None:
+        pred_masks = torch.zeros_like(gt_masks)
+    assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
+    assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
+
+    B, _, _, W_im = gt_masks.shape
+    device = gt_masks.device
+
+    # false positive region, a new point sampled in this region should have
+    # negative label to correct the FP error
+    fp_masks = ~gt_masks & pred_masks
+    # false negative region, a new point sampled in this region should have
+    # positive label to correct the FN error
+    fn_masks = gt_masks & ~pred_masks
+
+    fp_masks = fp_masks.cpu().numpy()
+    fn_masks = fn_masks.cpu().numpy()
+    points = torch.zeros(B, 1, 2, dtype=torch.float)
+    labels = torch.ones(B, 1, dtype=torch.int32)
+    for b in range(B):
+        fn_mask = fn_masks[b, 0]
+        fp_mask = fp_masks[b, 0]
+        if padding:
+            fn_mask = np.pad(fn_mask, ((1, 1), (1, 1)), "constant")
+            fp_mask = np.pad(fp_mask, ((1, 1), (1, 1)), "constant")
+        # compute the distance of each point in FN/FP region to its boundary
+        fn_mask_dt = cv2.distanceTransform(fn_mask.astype(np.uint8), cv2.DIST_L2, 0)
+        fp_mask_dt = cv2.distanceTransform(fp_mask.astype(np.uint8), cv2.DIST_L2, 0)
+        if padding:
+            fn_mask_dt = fn_mask_dt[1:-1, 1:-1]
+            fp_mask_dt = fp_mask_dt[1:-1, 1:-1]
+
+        # take the point in FN/FP region with the largest distance to its boundary
+        fn_mask_dt_flat = fn_mask_dt.reshape(-1)
+        fp_mask_dt_flat = fp_mask_dt.reshape(-1)
+        fn_argmax = np.argmax(fn_mask_dt_flat)
+        fp_argmax = np.argmax(fp_mask_dt_flat)
+        is_positive = fn_mask_dt_flat[fn_argmax] > fp_mask_dt_flat[fp_argmax]
+        pt_idx = fn_argmax if is_positive else fp_argmax
+        points[b, 0, 0] = pt_idx % W_im  # x
+        points[b, 0, 1] = pt_idx // W_im  # y
+        labels[b, 0] = int(is_positive)
+
+    points = points.to(device)
+    labels = labels.to(device)
+    return points, labels
+
+
+def get_next_point(gt_masks, pred_masks, method):
+    if method == "uniform":
+        return sample_random_points_from_errors(gt_masks, pred_masks)
+    elif method == "center":
+        return sample_one_point_from_error_center(gt_masks, pred_masks)
+    else:
+        raise ValueError(f"unknown sampling method {method}")
diff --git a/sam2/sam2_image_predictor.py b/sam2/sam2_image_predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..41ce53af5924504c07216df52b2d2eefaeec7ae9
--- /dev/null
+++ b/sam2/sam2_image_predictor.py
@@ -0,0 +1,466 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import torch
+from PIL.Image import Image
+
+from sam2.modeling.sam2_base import SAM2Base
+
+from sam2.utils.transforms import SAM2Transforms
+
+
+class SAM2ImagePredictor:
+    def __init__(
+        self,
+        sam_model: SAM2Base,
+        mask_threshold=0.0,
+        max_hole_area=0.0,
+        max_sprinkle_area=0.0,
+        **kwargs,
+    ) -> None:
+        """
+        Uses SAM-2 to calculate the image embedding for an image, and then
+        allow repeated, efficient mask prediction given prompts.
+
+        Arguments:
+          sam_model (Sam-2): The model to use for mask prediction.
+          mask_threshold (float): The threshold to use when converting mask logits
+            to binary masks. Masks are thresholded at 0 by default.
+          max_hole_area (int): If max_hole_area > 0, we fill small holes in up to
+            the maximum area of max_hole_area in low_res_masks.
+          max_sprinkle_area (int): If max_sprinkle_area > 0, we remove small sprinkles up to
+            the maximum area of max_sprinkle_area in low_res_masks.
+        """
+        super().__init__()
+        self.model = sam_model
+        self._transforms = SAM2Transforms(
+            resolution=self.model.image_size,
+            mask_threshold=mask_threshold,
+            max_hole_area=max_hole_area,
+            max_sprinkle_area=max_sprinkle_area,
+        )
+
+        # Predictor state
+        self._is_image_set = False
+        self._features = None
+        self._orig_hw = None
+        # Whether the predictor is set for single image or a batch of images
+        self._is_batch = False
+
+        # Predictor config
+        self.mask_threshold = mask_threshold
+
+        # Spatial dim for backbone feature maps
+        self._bb_feat_sizes = [
+            (256, 256),
+            (128, 128),
+            (64, 64),
+        ]
+
+    @classmethod
+    def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2ImagePredictor":
+        """
+        Load a pretrained model from the Hugging Face hub.
+
+        Arguments:
+          model_id (str): The Hugging Face repository ID.
+          **kwargs: Additional arguments to pass to the model constructor.
+
+        Returns:
+          (SAM2ImagePredictor): The loaded model.
+        """
+        from sam2.build_sam import build_sam2_hf
+
+        sam_model = build_sam2_hf(model_id, **kwargs)
+        return cls(sam_model, **kwargs)
+
+    @torch.no_grad()
+    def set_image(
+        self,
+        image: Union[np.ndarray, Image],
+    ) -> None:
+        """
+        Calculates the image embeddings for the provided image, allowing
+        masks to be predicted with the 'predict' method.
+
+        Arguments:
+          image (np.ndarray or PIL Image): The input image to embed in RGB format. The image should be in HWC format if np.ndarray, or WHC format if PIL Image
+          with pixel values in [0, 255].
+          image_format (str): The color format of the image, in ['RGB', 'BGR'].
+        """
+        self.reset_predictor()
+        # Transform the image to the form expected by the model
+        if isinstance(image, np.ndarray):
+            logging.info("For numpy array image, we assume (HxWxC) format")
+            self._orig_hw = [image.shape[:2]]
+        elif isinstance(image, Image):
+            w, h = image.size
+            self._orig_hw = [(h, w)]
+        else:
+            raise NotImplementedError("Image format not supported")
+
+        input_image = self._transforms(image)
+        input_image = input_image[None, ...].to(self.device)
+
+        assert (
+            len(input_image.shape) == 4 and input_image.shape[1] == 3
+        ), f"input_image must be of size 1x3xHxW, got {input_image.shape}"
+        logging.info("Computing image embeddings for the provided image...")
+        backbone_out = self.model.forward_image(input_image)
+        _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
+        # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
+        if self.model.directly_add_no_mem_embed:
+            vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
+
+        feats = [
+            feat.permute(1, 2, 0).view(1, -1, *feat_size)
+            for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
+        ][::-1]
+        self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
+        self._is_image_set = True
+        logging.info("Image embeddings computed.")
+
+    @torch.no_grad()
+    def set_image_batch(
+        self,
+        image_list: List[Union[np.ndarray]],
+    ) -> None:
+        """
+        Calculates the image embeddings for the provided image batch, allowing
+        masks to be predicted with the 'predict_batch' method.
+
+        Arguments:
+          image_list (List[np.ndarray]): The input images to embed in RGB format. The image should be in HWC format if np.ndarray
+          with pixel values in [0, 255].
+        """
+        self.reset_predictor()
+        assert isinstance(image_list, list)
+        self._orig_hw = []
+        for image in image_list:
+            assert isinstance(
+                image, np.ndarray
+            ), "Images are expected to be an np.ndarray in RGB format, and of shape  HWC"
+            self._orig_hw.append(image.shape[:2])
+        # Transform the image to the form expected by the model
+        img_batch = self._transforms.forward_batch(image_list)
+        img_batch = img_batch.to(self.device)
+        batch_size = img_batch.shape[0]
+        assert (
+            len(img_batch.shape) == 4 and img_batch.shape[1] == 3
+        ), f"img_batch must be of size Bx3xHxW, got {img_batch.shape}"
+        logging.info("Computing image embeddings for the provided images...")
+        backbone_out = self.model.forward_image(img_batch)
+        _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
+        # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
+        if self.model.directly_add_no_mem_embed:
+            vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
+
+        feats = [
+            feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
+            for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
+        ][::-1]
+        self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
+        self._is_image_set = True
+        self._is_batch = True
+        logging.info("Image embeddings computed.")
+
+    def predict_batch(
+        self,
+        point_coords_batch: List[np.ndarray] = None,
+        point_labels_batch: List[np.ndarray] = None,
+        box_batch: List[np.ndarray] = None,
+        mask_input_batch: List[np.ndarray] = None,
+        multimask_output: bool = True,
+        return_logits: bool = False,
+        normalize_coords=True,
+    ) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]:
+        """This function is very similar to predict(...), however it is used for batched mode, when the model is expected to generate predictions on multiple images.
+        It returns a tuple of lists of masks, ious, and low_res_masks_logits.
+        """
+        assert self._is_batch, "This function should only be used when in batched mode"
+        if not self._is_image_set:
+            raise RuntimeError(
+                "An image must be set with .set_image_batch(...) before mask prediction."
+            )
+        num_images = len(self._features["image_embed"])
+        all_masks = []
+        all_ious = []
+        all_low_res_masks = []
+        for img_idx in range(num_images):
+            # Transform input prompts
+            point_coords = (
+                point_coords_batch[img_idx] if point_coords_batch is not None else None
+            )
+            point_labels = (
+                point_labels_batch[img_idx] if point_labels_batch is not None else None
+            )
+            box = box_batch[img_idx] if box_batch is not None else None
+            mask_input = (
+                mask_input_batch[img_idx] if mask_input_batch is not None else None
+            )
+            mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
+                point_coords,
+                point_labels,
+                box,
+                mask_input,
+                normalize_coords,
+                img_idx=img_idx,
+            )
+            masks, iou_predictions, low_res_masks = self._predict(
+                unnorm_coords,
+                labels,
+                unnorm_box,
+                mask_input,
+                multimask_output,
+                return_logits=return_logits,
+                img_idx=img_idx,
+            )
+            masks_np = masks.squeeze(0).float().detach().cpu().numpy()
+            iou_predictions_np = (
+                iou_predictions.squeeze(0).float().detach().cpu().numpy()
+            )
+            low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
+            all_masks.append(masks_np)
+            all_ious.append(iou_predictions_np)
+            all_low_res_masks.append(low_res_masks_np)
+
+        return all_masks, all_ious, all_low_res_masks
+
+    def predict(
+        self,
+        point_coords: Optional[np.ndarray] = None,
+        point_labels: Optional[np.ndarray] = None,
+        box: Optional[np.ndarray] = None,
+        mask_input: Optional[np.ndarray] = None,
+        multimask_output: bool = True,
+        return_logits: bool = False,
+        normalize_coords=True,
+    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
+        """
+        Predict masks for the given input prompts, using the currently set image.
+
+        Arguments:
+          point_coords (np.ndarray or None): A Nx2 array of point prompts to the
+            model. Each point is in (X,Y) in pixels.
+          point_labels (np.ndarray or None): A length N array of labels for the
+            point prompts. 1 indicates a foreground point and 0 indicates a
+            background point.
+          box (np.ndarray or None): A length 4 array given a box prompt to the
+            model, in XYXY format.
+          mask_input (np.ndarray): A low resolution mask input to the model, typically
+            coming from a previous prediction iteration. Has form 1xHxW, where
+            for SAM, H=W=256.
+          multimask_output (bool): If true, the model will return three masks.
+            For ambiguous input prompts (such as a single click), this will often
+            produce better masks than a single prediction. If only a single
+            mask is needed, the model's predicted quality score can be used
+            to select the best mask. For non-ambiguous prompts, such as multiple
+            input prompts, multimask_output=False can give better results.
+          return_logits (bool): If true, returns un-thresholded masks logits
+            instead of a binary mask.
+          normalize_coords (bool): If true, the point coordinates will be normalized to the range [0,1] and point_coords is expected to be wrt. image dimensions.
+
+        Returns:
+          (np.ndarray): The output masks in CxHxW format, where C is the
+            number of masks, and (H, W) is the original image size.
+          (np.ndarray): An array of length C containing the model's
+            predictions for the quality of each mask.
+          (np.ndarray): An array of shape CxHxW, where C is the number
+            of masks and H=W=256. These low resolution logits can be passed to
+            a subsequent iteration as mask input.
+        """
+        if not self._is_image_set:
+            raise RuntimeError(
+                "An image must be set with .set_image(...) before mask prediction."
+            )
+
+        # Transform input prompts
+
+        mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
+            point_coords, point_labels, box, mask_input, normalize_coords
+        )
+
+        masks, iou_predictions, low_res_masks = self._predict(
+            unnorm_coords,
+            labels,
+            unnorm_box,
+            mask_input,
+            multimask_output,
+            return_logits=return_logits,
+        )
+
+        masks_np = masks.squeeze(0).float().detach().cpu().numpy()
+        iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy()
+        low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
+        return masks_np, iou_predictions_np, low_res_masks_np
+
+    def _prep_prompts(
+        self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1
+    ):
+
+        unnorm_coords, labels, unnorm_box, mask_input = None, None, None, None
+        if point_coords is not None:
+            assert (
+                point_labels is not None
+            ), "point_labels must be supplied if point_coords is supplied."
+            point_coords = torch.as_tensor(
+                point_coords, dtype=torch.float, device=self.device
+            )
+            unnorm_coords = self._transforms.transform_coords(
+                point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
+            )
+            labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
+            if len(unnorm_coords.shape) == 2:
+                unnorm_coords, labels = unnorm_coords[None, ...], labels[None, ...]
+        if box is not None:
+            box = torch.as_tensor(box, dtype=torch.float, device=self.device)
+            unnorm_box = self._transforms.transform_boxes(
+                box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
+            )  # Bx2x2
+        if mask_logits is not None:
+            mask_input = torch.as_tensor(
+                mask_logits, dtype=torch.float, device=self.device
+            )
+            if len(mask_input.shape) == 3:
+                mask_input = mask_input[None, :, :, :]
+        return mask_input, unnorm_coords, labels, unnorm_box
+
+    @torch.no_grad()
+    def _predict(
+        self,
+        point_coords: Optional[torch.Tensor],
+        point_labels: Optional[torch.Tensor],
+        boxes: Optional[torch.Tensor] = None,
+        mask_input: Optional[torch.Tensor] = None,
+        multimask_output: bool = True,
+        return_logits: bool = False,
+        img_idx: int = -1,
+    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+        """
+        Predict masks for the given input prompts, using the currently set image.
+        Input prompts are batched torch tensors and are expected to already be
+        transformed to the input frame using SAM2Transforms.
+
+        Arguments:
+          point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
+            model. Each point is in (X,Y) in pixels.
+          point_labels (torch.Tensor or None): A BxN array of labels for the
+            point prompts. 1 indicates a foreground point and 0 indicates a
+            background point.
+          boxes (np.ndarray or None): A Bx4 array given a box prompt to the
+            model, in XYXY format.
+          mask_input (np.ndarray): A low resolution mask input to the model, typically
+            coming from a previous prediction iteration. Has form Bx1xHxW, where
+            for SAM, H=W=256. Masks returned by a previous iteration of the
+            predict method do not need further transformation.
+          multimask_output (bool): If true, the model will return three masks.
+            For ambiguous input prompts (such as a single click), this will often
+            produce better masks than a single prediction. If only a single
+            mask is needed, the model's predicted quality score can be used
+            to select the best mask. For non-ambiguous prompts, such as multiple
+            input prompts, multimask_output=False can give better results.
+          return_logits (bool): If true, returns un-thresholded masks logits
+            instead of a binary mask.
+
+        Returns:
+          (torch.Tensor): The output masks in BxCxHxW format, where C is the
+            number of masks, and (H, W) is the original image size.
+          (torch.Tensor): An array of shape BxC containing the model's
+            predictions for the quality of each mask.
+          (torch.Tensor): An array of shape BxCxHxW, where C is the number
+            of masks and H=W=256. These low res logits can be passed to
+            a subsequent iteration as mask input.
+        """
+        if not self._is_image_set:
+            raise RuntimeError(
+                "An image must be set with .set_image(...) before mask prediction."
+            )
+
+        if point_coords is not None:
+            concat_points = (point_coords, point_labels)
+        else:
+            concat_points = None
+
+        # Embed prompts
+        if boxes is not None:
+            box_coords = boxes.reshape(-1, 2, 2)
+            box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device)
+            box_labels = box_labels.repeat(boxes.size(0), 1)
+            # we merge "boxes" and "points" into a single "concat_points" input (where
+            # boxes are added at the beginning) to sam_prompt_encoder
+            if concat_points is not None:
+                concat_coords = torch.cat([box_coords, concat_points[0]], dim=1)
+                concat_labels = torch.cat([box_labels, concat_points[1]], dim=1)
+                concat_points = (concat_coords, concat_labels)
+            else:
+                concat_points = (box_coords, box_labels)
+
+        sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
+            points=concat_points,
+            boxes=None,
+            masks=mask_input,
+        )
+
+        # Predict masks
+        batched_mode = (
+            concat_points is not None and concat_points[0].shape[0] > 1
+        )  # multi object prediction
+        high_res_features = [
+            feat_level[img_idx].unsqueeze(0)
+            for feat_level in self._features["high_res_feats"]
+        ]
+        low_res_masks, iou_predictions, _, _ = self.model.sam_mask_decoder(
+            image_embeddings=self._features["image_embed"][img_idx].unsqueeze(0),
+            image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
+            sparse_prompt_embeddings=sparse_embeddings,
+            dense_prompt_embeddings=dense_embeddings,
+            multimask_output=multimask_output,
+            repeat_image=batched_mode,
+            high_res_features=high_res_features,
+        )
+
+        # Upscale the masks to the original image resolution
+        masks = self._transforms.postprocess_masks(
+            low_res_masks, self._orig_hw[img_idx]
+        )
+        low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0)
+        if not return_logits:
+            masks = masks > self.mask_threshold
+
+        return masks, iou_predictions, low_res_masks
+
+    def get_image_embedding(self) -> torch.Tensor:
+        """
+        Returns the image embeddings for the currently set image, with
+        shape 1xCxHxW, where C is the embedding dimension and (H,W) are
+        the embedding spatial dimension of SAM (typically C=256, H=W=64).
+        """
+        if not self._is_image_set:
+            raise RuntimeError(
+                "An image must be set with .set_image(...) to generate an embedding."
+            )
+        assert (
+            self._features is not None
+        ), "Features must exist if an image has been set."
+        return self._features["image_embed"]
+
+    @property
+    def device(self) -> torch.device:
+        return self.model.device
+
+    def reset_predictor(self) -> None:
+        """
+        Resets the image embeddings and other state variables.
+        """
+        self._is_image_set = False
+        self._features = None
+        self._orig_hw = None
+        self._is_batch = False
diff --git a/sam2/sam2_video_predictor.py b/sam2/sam2_video_predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..c4aebb9b8073ce49b16ad18ebeebf4cf55641419
--- /dev/null
+++ b/sam2/sam2_video_predictor.py
@@ -0,0 +1,1312 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import warnings
+from collections import OrderedDict
+
+import torch
+
+from tqdm import tqdm
+
+from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
+from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames
+import sys
+import pdb
+import numpy as np
+from copy import deepcopy
+
+class SAM2VideoPredictor(SAM2Base):
+    """The predictor class to handle user interactions and manage inference states."""
+
+    def __init__(
+        self,
+        fill_hole_area=0,
+        # whether to apply non-overlapping constraints on the output object masks
+        non_overlap_masks=False,
+        # whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks;
+        # note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True)
+        clear_non_cond_mem_around_input=False,
+        # whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True).
+        clear_non_cond_mem_for_multi_obj=False,
+        # if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
+        # if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
+        add_all_frames_to_correct_as_cond=False,
+        **kwargs,
+    ):
+        super().__init__(**kwargs)
+        self.fill_hole_area = fill_hole_area
+        self.non_overlap_masks = non_overlap_masks
+        self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
+        self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj
+        self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
+
+    @torch.inference_mode()
+    def init_state(
+        self,
+        video_path,
+        offload_video_to_cpu=False,
+        offload_state_to_cpu=False,
+        async_loading_frames=False,
+    ):
+        """Initialize an inference state."""
+        compute_device = self.device  # device of the model
+        images, video_height, video_width = load_video_frames(
+            video_path=video_path,
+            image_size=self.image_size,
+            offload_video_to_cpu=offload_video_to_cpu,
+            async_loading_frames=async_loading_frames,
+            compute_device=compute_device,
+        )
+        inference_state = {}
+        inference_state["images"] = images
+        inference_state["num_frames"] = len(images)
+        # whether to offload the video frames to CPU memory
+        # turning on this option saves the GPU memory with only a very small overhead
+        inference_state["offload_video_to_cpu"] = offload_video_to_cpu
+        # whether to offload the inference state to CPU memory
+        # turning on this option saves the GPU memory at the cost of a lower tracking fps
+        # (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object
+        # and from 24 to 21 when tracking two objects)
+        # inference_state["offload_state_to_cpu"] = offload_state_to_cpu
+        inference_state["offload_state_to_cpu"] = True
+        # the original video height and width, used for resizing final output scores
+        inference_state["video_height"] = video_height
+        inference_state["video_width"] = video_width
+        inference_state["device"] = compute_device
+        if offload_state_to_cpu:
+            inference_state["storage_device"] = torch.device("cpu")
+        else:
+            inference_state["storage_device"] = compute_device
+        # inputs on each frame
+        inference_state["point_inputs_per_obj"] = {}
+        inference_state["mask_inputs_per_obj"] = {}
+        # visual features on a small number of recently visited frames for quick interactions
+        inference_state["cached_features"] = {}
+        # values that don't change across frames (so we only need to hold one copy of them)
+        inference_state["constants"] = {}
+        # mapping between client-side object id and model-side object index
+        inference_state["obj_id_to_idx"] = OrderedDict()
+        inference_state["obj_idx_to_id"] = OrderedDict()
+        inference_state["obj_ids"] = []
+        # A storage to hold the model's tracking results and states on each frame
+        inference_state["output_dict"] = {
+            "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
+            "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
+        }
+        # Slice (view) of each object tracking results, sharing the same memory with "output_dict"
+        inference_state["output_dict_per_obj"] = {}
+        # A temporary storage to hold new outputs when user interact with a frame
+        # to add clicks or mask (it's merged into "output_dict" before propagation starts)
+        inference_state["temp_output_dict_per_obj"] = {}
+        # Frames that already holds consolidated outputs from click or mask inputs
+        # (we directly use their consolidated outputs during tracking)
+        inference_state["consolidated_frame_inds"] = {
+            "cond_frame_outputs": set(),  # set containing frame indices
+            "non_cond_frame_outputs": set(),  # set containing frame indices
+        }
+        # metadata for each tracking frame (e.g. which direction it's tracked)
+        inference_state["tracking_has_started"] = False
+        inference_state["frames_already_tracked"] = {}
+        # Warm up the visual backbone and cache the image feature on frame 0
+        self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
+        return inference_state
+
+    @classmethod
+    def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor":
+        """
+        Load a pretrained model from the Hugging Face hub.
+
+        Arguments:
+          model_id (str): The Hugging Face repository ID.
+          **kwargs: Additional arguments to pass to the model constructor.
+
+        Returns:
+          (SAM2VideoPredictor): The loaded model.
+        """
+        from sam2.build_sam import build_sam2_video_predictor_hf
+
+        sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
+        return sam_model
+
+    def _obj_id_to_idx(self, inference_state, obj_id):
+        """Map client-side object id to model-side object index."""
+        obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
+        if obj_idx is not None:
+            return obj_idx
+
+        # This is a new object id not sent to the server before. We only allow adding
+        # new objects *before* the tracking starts.
+        allow_new_object = not inference_state["tracking_has_started"]
+        if allow_new_object:
+            # get the next object slot
+            obj_idx = len(inference_state["obj_id_to_idx"])
+            inference_state["obj_id_to_idx"][obj_id] = obj_idx
+            inference_state["obj_idx_to_id"][obj_idx] = obj_id
+            inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
+            # set up input and output structures for this object
+            inference_state["point_inputs_per_obj"][obj_idx] = {}
+            inference_state["mask_inputs_per_obj"][obj_idx] = {}
+            inference_state["output_dict_per_obj"][obj_idx] = {
+                "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
+                "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
+            }
+            inference_state["temp_output_dict_per_obj"][obj_idx] = {
+                "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
+                "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
+            }
+            return obj_idx
+        else:
+            raise RuntimeError(
+                f"Cannot add new object id {obj_id} after tracking starts. "
+                f"All existing object ids: {inference_state['obj_ids']}. "
+                f"Please call 'reset_state' to restart from scratch."
+            )
+
+    def _obj_idx_to_id(self, inference_state, obj_idx):
+        """Map model-side object index to client-side object id."""
+        return inference_state["obj_idx_to_id"][obj_idx]
+
+    def _get_obj_num(self, inference_state):
+        """Get the total number of unique object ids received so far in this session."""
+        return len(inference_state["obj_idx_to_id"])
+
+    @torch.inference_mode()
+    def add_new_points_or_box(
+        self,
+        inference_state,
+        frame_idx,
+        obj_id,
+        points=None,
+        labels=None,
+        clear_old_points=True,
+        normalize_coords=True,
+        box=None,
+    ):
+        """Add new points to a frame."""
+        obj_idx = self._obj_id_to_idx(inference_state, obj_id)
+        point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
+        mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
+
+        if (points is not None) != (labels is not None):
+            raise ValueError("points and labels must be provided together")
+        if points is None and box is None:
+            raise ValueError("at least one of points or box must be provided as input")
+
+        if points is None:
+            points = torch.zeros(0, 2, dtype=torch.float32)
+        elif not isinstance(points, torch.Tensor):
+            points = torch.tensor(points, dtype=torch.float32)
+        if labels is None:
+            labels = torch.zeros(0, dtype=torch.int32)
+        elif not isinstance(labels, torch.Tensor):
+            labels = torch.tensor(labels, dtype=torch.int32)
+        if points.dim() == 2:
+            points = points.unsqueeze(0)  # add batch dimension
+        if labels.dim() == 1:
+            labels = labels.unsqueeze(0)  # add batch dimension
+
+        # If `box` is provided, we add it as the first two points with labels 2 and 3
+        # along with the user-provided points (consistent with how SAM 2 is trained).
+        if box is not None:
+            if not clear_old_points:
+                raise ValueError(
+                    "cannot add box without clearing old points, since "
+                    "box prompt must be provided before any point prompt "
+                    "(please use clear_old_points=True instead)"
+                )
+            if inference_state["tracking_has_started"]:
+                warnings.warn(
+                    "You are adding a box after tracking starts. SAM 2 may not always be "
+                    "able to incorporate a box prompt for *refinement*. If you intend to "
+                    "use box prompt as an *initial* input before tracking, please call "
+                    "'reset_state' on the inference state to restart from scratch.",
+                    category=UserWarning,
+                    stacklevel=2,
+                )
+            if not isinstance(box, torch.Tensor):
+                box = torch.tensor(box, dtype=torch.float32, device=points.device)
+            box_coords = box.reshape(1, 2, 2)
+            box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device)
+            box_labels = box_labels.reshape(1, 2)
+            points = torch.cat([box_coords, points], dim=1)
+            labels = torch.cat([box_labels, labels], dim=1)
+
+        if normalize_coords:
+            video_H = inference_state["video_height"]
+            video_W = inference_state["video_width"]
+            points = points / torch.tensor([video_W, video_H]).to(points.device)
+        # scale the (normalized) coordinates by the model's internal image size
+        points = points * self.image_size
+        points = points.to(inference_state["device"])
+        labels = labels.to(inference_state["device"])
+
+        if not clear_old_points:
+            point_inputs = point_inputs_per_frame.get(frame_idx, None)
+        else:
+            point_inputs = None
+        point_inputs = concat_points(point_inputs, points, labels)
+
+        point_inputs_per_frame[frame_idx] = point_inputs
+        mask_inputs_per_frame.pop(frame_idx, None)
+        # If this frame hasn't been tracked before, we treat it as an initial conditioning
+        # frame, meaning that the inputs points are to generate segments on this frame without
+        # using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
+        # the input points will be used to correct the already tracked masks.
+        is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
+        # whether to track in reverse time order
+        if is_init_cond_frame:
+            reverse = False
+        else:
+            reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
+        obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
+        obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
+        # Add a frame to conditioning output if it's an initial conditioning frame or
+        # if the model sees all frames receiving clicks/mask as conditioning frames.
+        is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
+        storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
+
+        # Get any previously predicted mask logits on this object and feed it along with
+        # the new clicks into the SAM mask decoder.
+        prev_sam_mask_logits = None
+        # lookup temporary output dict first, which contains the most recent output
+        # (if not found, then lookup conditioning and non-conditioning frame output)
+        prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
+        if prev_out is None:
+            prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx)
+            if prev_out is None:
+                prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
+
+        if prev_out is not None and prev_out["pred_masks"] is not None:
+            device = inference_state["device"]
+            prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True)
+            # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
+            prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
+        current_out, _, _ = self._run_single_frame_inference(
+            inference_state=inference_state,
+            output_dict=obj_output_dict,  # run on the slice of a single object
+            frame_idx=frame_idx,
+            batch_size=1,  # run on the slice of a single object
+            is_init_cond_frame=is_init_cond_frame,
+            point_inputs=point_inputs,
+            mask_inputs=None,
+            reverse=reverse,
+            # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
+            # at the beginning of `propagate_in_video` (after user finalize their clicks). This
+            # allows us to enforce non-overlapping constraints on all objects before encoding
+            # them into memory.
+            run_mem_encoder=False,
+            prev_sam_mask_logits=prev_sam_mask_logits,
+            start_frame_idx=frame_idx,
+        )
+        # Add the output to the output dict (to be used as future memory)
+        obj_temp_output_dict[storage_key][frame_idx] = current_out
+
+        # Resize the output mask to the original video resolution
+        obj_ids = inference_state["obj_ids"]
+        consolidated_out = self._consolidate_temp_output_across_obj(
+            inference_state,
+            frame_idx,
+            is_cond=is_cond,
+            run_mem_encoder=False,
+            consolidate_at_video_res=True,
+        )
+        _, video_res_masks = self._get_orig_video_res_output(
+            inference_state, consolidated_out["pred_masks_video_res"]
+        )
+        return frame_idx, obj_ids, video_res_masks
+
+    def add_new_points(self, *args, **kwargs):
+        """Deprecated method. Please use `add_new_points_or_box` instead."""
+        return self.add_new_points_or_box(*args, **kwargs)
+
+    @torch.inference_mode()
+    def add_new_mask(
+        self,
+        inference_state,
+        frame_idx,
+        obj_id,
+        mask,
+    ):
+        """Add new mask to a frame."""
+        obj_idx = self._obj_id_to_idx(inference_state, obj_id)
+        point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
+        mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
+
+        if not isinstance(mask, torch.Tensor):
+            mask = torch.tensor(mask, dtype=torch.bool)
+        assert mask.dim() == 2
+        mask_H, mask_W = mask.shape
+        mask_inputs_orig = mask[None, None]  # add batch and channel dimension
+        mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"])
+
+        # resize the mask if it doesn't match the model's image size
+        if mask_H != self.image_size or mask_W != self.image_size:
+            mask_inputs = torch.nn.functional.interpolate(
+                mask_inputs_orig,
+                size=(self.image_size, self.image_size),
+                align_corners=False,
+                mode="bilinear",
+                antialias=True,  # use antialias for downsampling
+            )
+            mask_inputs = (mask_inputs >= 0.5).float()
+        else:
+            mask_inputs = mask_inputs_orig
+
+        mask_inputs_per_frame[frame_idx] = mask_inputs
+        point_inputs_per_frame.pop(frame_idx, None)
+        # If this frame hasn't been tracked before, we treat it as an initial conditioning
+        # frame, meaning that the inputs points are to generate segments on this frame without
+        # using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
+        # the input points will be used to correct the already tracked masks.
+        is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
+        # whether to track in reverse time order
+        if is_init_cond_frame:
+            reverse = False
+        else:
+            reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
+        obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
+        obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
+        # Add a frame to conditioning output if it's an initial conditioning frame or
+        # if the model sees all frames receiving clicks/mask as conditioning frames.
+        is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
+        storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
+
+        current_out, _, _ = self._run_single_frame_inference(
+            inference_state=inference_state,
+            output_dict=obj_output_dict,  # run on the slice of a single object
+            frame_idx=frame_idx,
+            batch_size=1,  # run on the slice of a single object
+            is_init_cond_frame=is_init_cond_frame,
+            point_inputs=None,
+            mask_inputs=mask_inputs,
+            reverse=reverse,
+            # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
+            # at the beginning of `propagate_in_video` (after user finalize their clicks). This
+            # allows us to enforce non-overlapping constraints on all objects before encoding
+            # them into memory.
+            run_mem_encoder=False,
+            start_frame_idx=frame_idx,
+        )
+        # Add the output to the output dict (to be used as future memory)
+        obj_temp_output_dict[storage_key][frame_idx] = current_out
+
+        # Resize the output mask to the original video resolution
+        obj_ids = inference_state["obj_ids"]
+        consolidated_out = self._consolidate_temp_output_across_obj(
+            inference_state,
+            frame_idx,
+            is_cond=is_cond,
+            run_mem_encoder=False,
+            consolidate_at_video_res=True,
+        )
+        _, video_res_masks = self._get_orig_video_res_output(
+            inference_state, consolidated_out["pred_masks_video_res"]
+        )
+        return frame_idx, obj_ids, video_res_masks
+
+    def _get_orig_video_res_output(self, inference_state, any_res_masks):
+        """
+        Resize the object scores to the original video resolution (video_res_masks)
+        and apply non-overlapping constraints for final output.
+        """
+        device = inference_state["device"]
+        video_H = inference_state["video_height"]
+        video_W = inference_state["video_width"]
+        any_res_masks = any_res_masks.to(device, non_blocking=True)
+        if any_res_masks.shape[-2:] == (video_H, video_W):
+            video_res_masks = any_res_masks
+        else:
+            video_res_masks = torch.nn.functional.interpolate(
+                any_res_masks,
+                size=(video_H, video_W),
+                mode="bilinear",
+                align_corners=False,
+            )
+        if self.non_overlap_masks:
+            video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
+        return any_res_masks, video_res_masks
+
+    def _consolidate_temp_output_across_obj(
+        self,
+        inference_state,
+        frame_idx,
+        is_cond,
+        run_mem_encoder,
+        consolidate_at_video_res=False,
+    ):
+        """
+        Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on
+        a frame into a single output for all objects, including
+        1) fill any missing objects either from `output_dict_per_obj` (if they exist in
+           `output_dict_per_obj` for this frame) or leave them as placeholder values
+           (if they don't exist in `output_dict_per_obj` for this frame);
+        2) if specified, rerun memory encoder after apply non-overlapping constraints
+           on the object scores.
+        """
+        batch_size = self._get_obj_num(inference_state)
+        storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
+        # Optionally, we allow consolidating the temporary outputs at the original
+        # video resolution (to provide a better editing experience for mask prompts).
+        if consolidate_at_video_res:
+            assert not run_mem_encoder, "memory encoder cannot run at video resolution"
+            consolidated_H = inference_state["video_height"]
+            consolidated_W = inference_state["video_width"]
+            consolidated_mask_key = "pred_masks_video_res"
+        else:
+            consolidated_H = consolidated_W = self.image_size // 4
+            consolidated_mask_key = "pred_masks"
+
+        # Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
+        # will be added when rerunning the memory encoder after applying non-overlapping
+        # constraints to object scores. Its "pred_masks" are prefilled with a large
+        # negative value (NO_OBJ_SCORE) to represent missing objects.
+        consolidated_out = {
+            "maskmem_features": None,
+            "maskmem_pos_enc": None,
+            consolidated_mask_key: torch.full(
+                size=(batch_size, 1, consolidated_H, consolidated_W),
+                fill_value=NO_OBJ_SCORE,
+                dtype=torch.float32,
+                device=inference_state["storage_device"],
+            ),
+            "obj_ptr": torch.full(
+                size=(batch_size, self.hidden_dim),
+                fill_value=NO_OBJ_SCORE,
+                dtype=torch.float32,
+                device=inference_state["device"],
+            ),
+            "object_score_logits": torch.full(
+                size=(batch_size, 1),
+                # default to 10.0 for object_score_logits, i.e. assuming the object is
+                # present as sigmoid(10)=1, same as in `predict_masks` of `MaskDecoder`
+                fill_value=10.0,
+                dtype=torch.float32,
+                device=inference_state["device"],
+            ),
+        }
+        empty_mask_ptr = None
+        for obj_idx in range(batch_size):
+            obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
+            obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
+            out = obj_temp_output_dict[storage_key].get(frame_idx, None)
+            # If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
+            # we fall back and look up its previous output in "output_dict_per_obj".
+            # We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
+            # "output_dict_per_obj" to find a previous output for this object.
+            if out is None:
+                out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None)
+            if out is None:
+                out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None)
+            # If the object doesn't appear in "output_dict_per_obj" either, we skip it
+            # and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
+            # placeholder above) and set its object pointer to be a dummy pointer.
+            if out is None:
+                # Fill in dummy object pointers for those objects without any inputs or
+                # tracking outcomes on this frame (only do it under `run_mem_encoder=True`,
+                # i.e. when we need to build the memory for tracking).
+                if run_mem_encoder:
+                    if empty_mask_ptr is None:
+                        empty_mask_ptr = self._get_empty_mask_ptr(
+                            inference_state, frame_idx
+                        )
+                    # fill object pointer with a dummy pointer (based on an empty mask)
+                    consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr
+                continue
+            # Add the temporary object output mask to consolidated output mask
+            obj_mask = out["pred_masks"]
+            consolidated_pred_masks = consolidated_out[consolidated_mask_key]
+            if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
+                consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask
+            else:
+                # Resize first if temporary object mask has a different resolution
+                resized_obj_mask = torch.nn.functional.interpolate(
+                    obj_mask,
+                    size=consolidated_pred_masks.shape[-2:],
+                    mode="bilinear",
+                    align_corners=False,
+                )
+                consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask
+            consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]
+            consolidated_out["object_score_logits"][obj_idx : obj_idx + 1] = out[
+                "object_score_logits"
+            ]
+
+        # Optionally, apply non-overlapping constraints on the consolidated scores
+        # and rerun the memory encoder
+        if run_mem_encoder:
+            device = inference_state["device"]
+            high_res_masks = torch.nn.functional.interpolate(
+                consolidated_out["pred_masks"].to(device, non_blocking=True),
+                size=(self.image_size, self.image_size),
+                mode="bilinear",
+                align_corners=False,
+            )
+            if self.non_overlap_masks_for_mem_enc:
+                high_res_masks = self._apply_non_overlapping_constraints(high_res_masks)
+            maskmem_features, maskmem_pos_enc = self._run_memory_encoder(
+                inference_state=inference_state,
+                frame_idx=frame_idx,
+                batch_size=batch_size,
+                high_res_masks=high_res_masks,
+                object_score_logits=consolidated_out["object_score_logits"],
+                is_mask_from_pts=True,  # these frames are what the user interacted with
+            )
+            consolidated_out["maskmem_features"] = maskmem_features
+            consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc
+
+        return consolidated_out
+
+    def _get_empty_mask_ptr(self, inference_state, frame_idx):
+        """Get a dummy object pointer based on an empty mask on the current frame."""
+        # A dummy (empty) mask with a single object
+        batch_size = 1
+        mask_inputs = torch.zeros(
+            (batch_size, 1, self.image_size, self.image_size),
+            dtype=torch.float32,
+            device=inference_state["device"],
+        )
+
+        # Retrieve correct image features
+        (
+            _,
+            _,
+            current_vision_feats,
+            current_vision_pos_embeds,
+            feat_sizes,
+        ) = self._get_image_feature(inference_state, frame_idx, batch_size)
+
+        # Feed the empty mask and image feature above to get a dummy object pointer
+        current_out = self.track_step(
+            frame_idx=frame_idx,
+            is_init_cond_frame=True,
+            current_vision_feats=current_vision_feats,
+            current_vision_pos_embeds=current_vision_pos_embeds,
+            feat_sizes=feat_sizes,
+            point_inputs=None,
+            mask_inputs=mask_inputs,
+            output_dict={},
+            num_frames=inference_state["num_frames"],
+            track_in_reverse=False,
+            run_mem_encoder=False,
+            prev_sam_mask_logits=None,
+        )
+        return current_out["obj_ptr"]
+
+    @torch.inference_mode()
+    def propagate_in_video_preflight(self, inference_state):
+        """Prepare inference_state and consolidate temporary outputs before tracking."""
+        # Tracking has started and we don't allow adding new objects until session is reset.
+        inference_state["tracking_has_started"] = True
+        batch_size = self._get_obj_num(inference_state)
+
+        # Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
+        # add them into "output_dict".
+        temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
+        output_dict = inference_state["output_dict"]
+        # "consolidated_frame_inds" contains indices of those frames where consolidated
+        # temporary outputs have been added (either in this call or any previous calls
+        # to `propagate_in_video_preflight`).
+        consolidated_frame_inds = inference_state["consolidated_frame_inds"]
+        for is_cond in [False, True]:
+            # Separately consolidate conditioning and non-conditioning temp outputs
+            storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
+            # Find all the frames that contain temporary outputs for any objects
+            # (these should be the frames that have just received clicks for mask inputs
+            # via `add_new_points_or_box` or `add_new_mask`)
+            temp_frame_inds = set()
+            for obj_temp_output_dict in temp_output_dict_per_obj.values():
+                temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
+            consolidated_frame_inds[storage_key].update(temp_frame_inds)
+            # consolidate the temporary output across all objects on this frame
+            for frame_idx in temp_frame_inds:
+                consolidated_out = self._consolidate_temp_output_across_obj(
+                    inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True
+                )
+                # merge them into "output_dict" and also create per-object slices
+                output_dict[storage_key][frame_idx] = consolidated_out
+                self._add_output_per_object(
+                    inference_state, frame_idx, consolidated_out, storage_key
+                )
+                clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
+                    self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
+                )
+                if clear_non_cond_mem:
+                    # clear non-conditioning memory of the surrounding frames
+                    self._clear_non_cond_mem_around_input(inference_state, frame_idx)
+
+            # clear temporary outputs in `temp_output_dict_per_obj`
+            for obj_temp_output_dict in temp_output_dict_per_obj.values():
+                obj_temp_output_dict[storage_key].clear()
+
+        # edge case: if an output is added to "cond_frame_outputs", we remove any prior
+        # output on the same frame in "non_cond_frame_outputs"
+        for frame_idx in output_dict["cond_frame_outputs"]:
+            output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
+        for obj_output_dict in inference_state["output_dict_per_obj"].values():
+            for frame_idx in obj_output_dict["cond_frame_outputs"]:
+                obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
+        for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
+            assert frame_idx in output_dict["cond_frame_outputs"]
+            consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
+
+        # Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames
+        # with either points or mask inputs (which should be true under a correct workflow).
+        all_consolidated_frame_inds = (
+            consolidated_frame_inds["cond_frame_outputs"]
+            | consolidated_frame_inds["non_cond_frame_outputs"]
+        )
+        input_frames_inds = set()
+        for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values():
+            input_frames_inds.update(point_inputs_per_frame.keys())
+        for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values():
+            input_frames_inds.update(mask_inputs_per_frame.keys())
+        assert all_consolidated_frame_inds == input_frames_inds
+
+    @torch.inference_mode()
+    def propagate_in_video(
+        self,
+        inference_state,
+        start_frame_idx=None,
+        max_frame_num_to_track=None,
+        reverse=False,
+    ):
+        """Propagate the input points across frames to track in the entire video."""
+        self.propagate_in_video_preflight(inference_state)
+        output_dict = inference_state["output_dict"]
+        consolidated_frame_inds = inference_state["consolidated_frame_inds"]
+        obj_ids = inference_state["obj_ids"]
+        num_frames = inference_state["num_frames"]
+        batch_size = self._get_obj_num(inference_state)
+        if len(output_dict["cond_frame_outputs"]) == 0:
+            raise RuntimeError("No points are provided; please add points first")
+        clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
+            self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
+        )
+
+        # set start index, end index, and processing order
+        if start_frame_idx is None:
+            # default: start from the earliest frame with input points
+            start_frame_idx = min(output_dict["cond_frame_outputs"])
+        if max_frame_num_to_track is None:
+            # default: track all the frames in the video
+            max_frame_num_to_track = num_frames
+        if reverse:
+            end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
+            if start_frame_idx > 0:
+                processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
+            else:
+                processing_order = []  # skip reverse tracking if starting from frame 0
+        else:
+            end_frame_idx = min(
+                start_frame_idx + max_frame_num_to_track, num_frames - 1
+            )
+            processing_order = range(start_frame_idx, end_frame_idx + 1)
+
+        mem_pick_indexs = 0 ###initialize the memory index
+        for frame_idx in tqdm(processing_order, desc="propagate in video"):
+            # We skip those frames already in consolidated outputs (these are frames
+            # that received input clicks or mask). Note that we cannot directly run
+            # batched forward on them via `_run_single_frame_inference` because the
+            # number of clicks on each object might be different.
+            if frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
+                storage_key = "cond_frame_outputs"
+                current_out = output_dict[storage_key][frame_idx]
+                pred_masks = current_out["pred_masks"]
+                if clear_non_cond_mem:
+                    # clear non-conditioning memory of the surrounding frames
+                    self._clear_non_cond_mem_around_input(inference_state, frame_idx)
+            elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]:
+                storage_key = "non_cond_frame_outputs"
+                current_out = output_dict[storage_key][frame_idx]
+                pred_masks = current_out["pred_masks"]
+            else:
+                storage_key = "non_cond_frame_outputs"
+                current_out, _, mem_pick_indexs = self._run_single_frame_inference(
+                    inference_state=inference_state,
+                    output_dict=output_dict,
+                    frame_idx=frame_idx,
+                    batch_size=batch_size,
+                    is_init_cond_frame=False,
+                    point_inputs=None,
+                    mask_inputs=None,
+                    reverse=reverse,
+                    run_mem_encoder=True,
+                    mem_pick_indexs=mem_pick_indexs,
+                    start_frame_idx=start_frame_idx,
+                )
+                output_dict[storage_key][frame_idx] = current_out
+        mask = [self._get_orig_video_res_output(inference_state, output_dict["cond_frame_outputs"][start_frame_idx]["pred_masks"])[1]]
+        for i in range(start_frame_idx+1, num_frames):
+            mask.append(
+                self._get_orig_video_res_output(
+                    inference_state, 
+                    output_dict["non_cond_frame_outputs"][i]["pred_masks"][...,mem_pick_indexs[0][i]])[1]
+                    )
+        return obj_ids, mask
+
+        # Create slices of per-object outputs for subsequent interaction with each
+        # individual object after tracking.
+        # self._add_output_per_object(
+        #     inference_state, frame_idx, current_out, storage_key
+        # )
+        # inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse}
+
+        # # Resize the output mask to the original video resolution (we directly use
+        # # the mask scores on GPU for output to avoid any CPU conversion in between)
+        # _, video_res_masks = self._get_orig_video_res_output(
+        #     inference_state, pred_masks
+        # )
+        # yield frame_idx, obj_ids, video_res_masks
+
+    def _add_output_per_object(
+        self, inference_state, frame_idx, current_out, storage_key
+    ):
+        """
+        Split a multi-object output into per-object output slices and add them into
+        `output_dict_per_obj`. The resulting slices share the same tensor storage.
+        """
+        maskmem_features = current_out["maskmem_features"]
+        assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)
+
+        maskmem_pos_enc = current_out["maskmem_pos_enc"]
+        assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)
+
+        output_dict_per_obj = inference_state["output_dict_per_obj"]
+        for obj_idx, obj_output_dict in output_dict_per_obj.items():
+            obj_slice = slice(obj_idx, obj_idx + 1)
+            obj_out = {
+                "maskmem_features": None,
+                "maskmem_pos_enc": None,
+                "pred_masks": current_out["pred_masks"][obj_slice],
+                "obj_ptr": current_out["obj_ptr"][obj_slice],
+                "object_score_logits": current_out["object_score_logits"][obj_slice],
+            }
+            if maskmem_features is not None:
+                obj_out["maskmem_features"] = maskmem_features[obj_slice]
+            if maskmem_pos_enc is not None:
+                obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
+            obj_output_dict[storage_key][frame_idx] = obj_out
+
+    @torch.inference_mode()
+    def clear_all_prompts_in_frame(
+        self, inference_state, frame_idx, obj_id, need_output=True
+    ):
+        """Remove all input points or mask in a specific frame for a given object."""
+        obj_idx = self._obj_id_to_idx(inference_state, obj_id)
+
+        # Clear the conditioning information on the given frame
+        inference_state["point_inputs_per_obj"][obj_idx].pop(frame_idx, None)
+        inference_state["mask_inputs_per_obj"][obj_idx].pop(frame_idx, None)
+
+        temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
+        temp_output_dict_per_obj[obj_idx]["cond_frame_outputs"].pop(frame_idx, None)
+        temp_output_dict_per_obj[obj_idx]["non_cond_frame_outputs"].pop(frame_idx, None)
+
+        # Check and see if there are still any inputs left on this frame
+        batch_size = self._get_obj_num(inference_state)
+        frame_has_input = False
+        for obj_idx2 in range(batch_size):
+            if frame_idx in inference_state["point_inputs_per_obj"][obj_idx2]:
+                frame_has_input = True
+                break
+            if frame_idx in inference_state["mask_inputs_per_obj"][obj_idx2]:
+                frame_has_input = True
+                break
+
+        # If this frame has no remaining inputs for any objects, we further clear its
+        # conditioning frame status
+        if not frame_has_input:
+            output_dict = inference_state["output_dict"]
+            consolidated_frame_inds = inference_state["consolidated_frame_inds"]
+            consolidated_frame_inds["cond_frame_outputs"].discard(frame_idx)
+            consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
+            # Remove the frame's conditioning output (possibly downgrading it to non-conditioning)
+            out = output_dict["cond_frame_outputs"].pop(frame_idx, None)
+            if out is not None:
+                # The frame is not a conditioning frame anymore since it's not receiving inputs,
+                # so we "downgrade" its output (if exists) to a non-conditioning frame output.
+                output_dict["non_cond_frame_outputs"][frame_idx] = out
+                inference_state["frames_already_tracked"].pop(frame_idx, None)
+            # Similarly, do it for the sliced output on each object.
+            for obj_idx2 in range(batch_size):
+                obj_output_dict = inference_state["output_dict_per_obj"][obj_idx2]
+                obj_out = obj_output_dict["cond_frame_outputs"].pop(frame_idx, None)
+                if obj_out is not None:
+                    obj_output_dict["non_cond_frame_outputs"][frame_idx] = obj_out
+
+            # If all the conditioning frames have been removed, we also clear the tracking outputs
+            if len(output_dict["cond_frame_outputs"]) == 0:
+                self._reset_tracking_results(inference_state)
+
+        if not need_output:
+            return
+        # Finally, output updated masks per object (after removing the inputs above)
+        obj_ids = inference_state["obj_ids"]
+        is_cond = any(
+            frame_idx in obj_temp_output_dict["cond_frame_outputs"]
+            for obj_temp_output_dict in temp_output_dict_per_obj.values()
+        )
+        consolidated_out = self._consolidate_temp_output_across_obj(
+            inference_state,
+            frame_idx,
+            is_cond=is_cond,
+            run_mem_encoder=False,
+            consolidate_at_video_res=True,
+        )
+        _, video_res_masks = self._get_orig_video_res_output(
+            inference_state, consolidated_out["pred_masks_video_res"]
+        )
+        return frame_idx, obj_ids, video_res_masks
+
+    @torch.inference_mode()
+    def reset_state(self, inference_state):
+        """Remove all input points or mask in all frames throughout the video."""
+        self._reset_tracking_results(inference_state)
+        # Remove all object ids
+        inference_state["obj_id_to_idx"].clear()
+        inference_state["obj_idx_to_id"].clear()
+        inference_state["obj_ids"].clear()
+        inference_state["point_inputs_per_obj"].clear()
+        inference_state["mask_inputs_per_obj"].clear()
+        inference_state["output_dict_per_obj"].clear()
+        inference_state["temp_output_dict_per_obj"].clear()
+
+    def _reset_tracking_results(self, inference_state):
+        """Reset all tracking inputs and results across the videos."""
+        for v in inference_state["point_inputs_per_obj"].values():
+            v.clear()
+        for v in inference_state["mask_inputs_per_obj"].values():
+            v.clear()
+        for v in inference_state["output_dict_per_obj"].values():
+            v["cond_frame_outputs"].clear()
+            v["non_cond_frame_outputs"].clear()
+        for v in inference_state["temp_output_dict_per_obj"].values():
+            v["cond_frame_outputs"].clear()
+            v["non_cond_frame_outputs"].clear()
+        inference_state["output_dict"]["cond_frame_outputs"].clear()
+        inference_state["output_dict"]["non_cond_frame_outputs"].clear()
+        inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear()
+        inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear()
+        inference_state["tracking_has_started"] = False
+        inference_state["frames_already_tracked"].clear()
+
+    def _get_image_feature(self, inference_state, frame_idx, batch_size):
+        """Compute the image features on a given frame."""
+        # Look up in the cache first
+        image, backbone_out = inference_state["cached_features"].get(
+            frame_idx, (None, None)
+        )
+        if backbone_out is None:
+            # Cache miss -- we will run inference on a single image
+            device = inference_state["device"]
+            image = inference_state["images"][frame_idx].to(device).float().unsqueeze(0)
+            backbone_out = self.forward_image(image)
+            # Cache the most recent frame's feature (for repeated interactions with
+            # a frame; we can use an LRU cache for more frames in the future).
+            inference_state["cached_features"] = {frame_idx: (image, backbone_out)}
+
+        # expand the features to have the same dimension as the number of objects
+        expanded_image = image.expand(batch_size, -1, -1, -1)
+        expanded_backbone_out = {
+            "backbone_fpn": backbone_out["backbone_fpn"].copy(),
+            "vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
+        }
+        for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]):
+            expanded_backbone_out["backbone_fpn"][i] = feat.expand(
+                batch_size, -1, -1, -1
+            )
+        for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]):
+            pos = pos.expand(batch_size, -1, -1, -1)
+            expanded_backbone_out["vision_pos_enc"][i] = pos
+
+        features = self._prepare_backbone_features(expanded_backbone_out)
+        features = (expanded_image,) + features
+        return features
+
+    def _run_single_frame_inference(
+        self,
+        inference_state,
+        output_dict,
+        frame_idx,
+        batch_size,
+        is_init_cond_frame,
+        point_inputs,
+        mask_inputs,
+        reverse,
+        run_mem_encoder,
+        prev_sam_mask_logits=None,
+        mem_pick_indexs=0,
+        start_frame_idx=0,
+    ):
+        """Run tracking on a single frame based on current inputs and previous memory."""
+        # Retrieve correct image features
+        (
+            _,
+            _,
+            current_vision_feats,
+            current_vision_pos_embeds,
+            feat_sizes,
+        ) = self._get_image_feature(inference_state, frame_idx, batch_size)
+
+        # point and mask should not appear as input simultaneously on the same frame
+        assert point_inputs is None or mask_inputs is None
+        storage_device = inference_state["storage_device"]
+        
+        current_outs = []
+        if frame_idx <= start_frame_idx+1:
+            current_out = self.track_step(
+                frame_idx=frame_idx,
+                is_init_cond_frame=is_init_cond_frame,
+                current_vision_feats=current_vision_feats,
+                current_vision_pos_embeds=current_vision_pos_embeds,
+                feat_sizes=feat_sizes,
+                point_inputs=point_inputs,
+                mask_inputs=mask_inputs,
+                output_dict=output_dict,
+                num_frames=inference_state["num_frames"],
+                track_in_reverse=reverse,
+                run_mem_encoder=run_mem_encoder,
+                prev_sam_mask_logits=prev_sam_mask_logits,
+                mem_pick_index=0, ###0 means no multiple pathway
+                start_frame_idx=start_frame_idx,
+            )
+            if run_mem_encoder:
+                maskmem_features, maskmem_pos_enc = self._encode_new_memory(
+                    current_vision_feats=current_vision_feats,
+                    feat_sizes=feat_sizes,
+                    pred_masks_high_res=current_out["pred_masks_high_res"],
+                    object_score_logits=current_out["object_score_logits"],
+                    is_mask_from_pts=(point_inputs is not None),
+                )
+                current_out["maskmem_features"] = maskmem_features
+                current_out["maskmem_pos_enc"] = maskmem_pos_enc
+            else:
+                current_out["maskmem_features"] = None
+                current_out["maskmem_pos_enc"] = None
+            maskmem_features = current_out["maskmem_features"]
+            
+            if maskmem_features is not None:
+                maskmem_features = maskmem_features.to(torch.bfloat16)
+                maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
+
+            maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
+            pred_masks_gpu = current_out["pred_masks"]
+            pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
+            
+            
+            if frame_idx == start_frame_idx + 1: ###initialize 
+                compact_current_out = {
+                    "maskmem_features": maskmem_features[..., None], ### N, 64, 64, 64
+                    "maskmem_pos_enc": maskmem_pos_enc,
+                    "pred_masks": pred_masks[..., None], ### N, 1, 256, 256
+                    "obj_ptr": current_out["obj_ptr"][..., None], ### N, 256
+                    "object_score_logits": current_out["object_score_logits"][..., None],
+                    "acc_score": [0 for _ in range(inference_state['num_pathway'])],
+                    "ious": current_out["ious"][...,None],
+                }
+            else:
+                compact_current_out = {
+                    "maskmem_features": maskmem_features,
+                    "maskmem_pos_enc": maskmem_pos_enc,
+                    "pred_masks": pred_masks,
+                    "obj_ptr": current_out["obj_ptr"],
+                    "object_score_logits": current_out["object_score_logits"],
+                }
+            mem_pick_indexs = [{i: 0 for i in range(start_frame_idx, frame_idx+1)} for _ in range(inference_state['num_pathway'])]
+            return compact_current_out, pred_masks_gpu, mem_pick_indexs
+        else:
+            run_time = inference_state['num_pathway']
+            for pathway_id in range(run_time):
+                ########if run_time greater than 1, load mulitple pathways in output dict with frame selection and attention modulation##########
+                current_out = self.track_step(
+                    frame_idx=frame_idx,
+                    is_init_cond_frame=is_init_cond_frame,
+                    current_vision_feats=current_vision_feats,
+                    current_vision_pos_embeds=current_vision_pos_embeds,
+                    feat_sizes=feat_sizes,
+                    point_inputs=point_inputs,
+                    mask_inputs=mask_inputs,
+                    output_dict=output_dict,
+                    num_frames=inference_state["num_frames"],
+                    track_in_reverse=reverse,
+                    run_mem_encoder=run_mem_encoder,
+                    prev_sam_mask_logits=prev_sam_mask_logits,
+                    mem_pick_index=mem_pick_indexs[pathway_id], ###dict: frame_idx -> memory_pathway
+                    start_frame_idx=start_frame_idx,
+                    iou_thre=inference_state['iou_thre'],
+                )
+                current_outs.append((pathway_id, current_out))
+        
+            all_scores = []
+            object_scores = []
+            for pathway_id, current_out in current_outs:
+                score_i = output_dict['non_cond_frame_outputs'][frame_idx-1]['acc_score'][pathway_id]
+                object_score = current_out['object_score_logits']
+                object_scores.append(object_score.abs().item())
+                ious = current_out['ious']
+                for j in range(3):  # son branch
+                    score_j = score_i + np.log(ious[0, j].item()+1e-5)
+                    iou_with_object = ious[0, j].float() if object_score.item() > 0 else -ious[0, j].float()
+                    all_scores.append((pathway_id, j, score_j, iou_with_object.item(), current_out))
+            topk_scores = []
+            sorted_scores = sorted(all_scores, key=lambda x: x[2], reverse=True)
+            if max(object_scores) > inference_state['uncertainty']:
+                for score in sorted_scores[:run_time]:
+                    topk_scores.append(score)
+            else:
+                seen_values = set()
+                for score in sorted_scores: 
+                    rounded_value = round(score[3], 2)
+                    if rounded_value not in seen_values:
+                        topk_scores.append(score)
+                        seen_values.add(rounded_value)
+                    if len(topk_scores) == inference_state['num_pathway']: 
+                        break
+                ### corner case: most masks overlap, prioritize diverse memory branch selection
+                if len(topk_scores) < inference_state['num_pathway']:
+                    memory = {score[0] for score in topk_scores}
+                    for i in range(run_time):
+                        if i not in memory:
+                            for score in sorted_scores:
+                                if score[0] == i:
+                                    topk_scores.append(score)
+                                    break
+                        if len(topk_scores) == inference_state['num_pathway']:
+                            break
+
+            temp_maskmem_feat = []
+            temp_pred_masks = []
+            temp_obj_ptr = []
+            temp_acc_score = []
+            temp_ious = []
+            temp_score_logit = []
+            mem_pick_indexs_new = [deepcopy(mem_pick_indexs[pathway_id]) for pathway_id, _, _, _, _ in topk_scores]
+            for ind, (pathway_id, j, score_j, _, current_out) in enumerate(topk_scores):
+                maskmem_features, maskmem_pos_enc = self._encode_new_memory(
+                    current_vision_feats=current_vision_feats,
+                    feat_sizes=feat_sizes,
+                    pred_masks_high_res=current_out["pred_masks_high_res"][:,j:j+1],
+                    object_score_logits=current_out["object_score_logits"],
+                    is_mask_from_pts=False,
+                )                
+                maskmem_features = maskmem_features.to(torch.bfloat16)
+                maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
+                temp_maskmem_feat.append(maskmem_features)
+                temp_pred_masks.append(current_out["pred_masks"][:,j:j+1])
+                temp_obj_ptr.append(current_out["obj_ptr"][:,j])
+                temp_acc_score.append(score_j)
+                temp_ious.append(current_out["ious"][0,j])
+                temp_score_logit.append(current_out['object_score_logits'])
+                mem_pick_indexs_new[ind][frame_idx] = ind 
+                mem_pick_indexs[ind] = mem_pick_indexs_new[ind]
+
+
+            current_out["maskmem_pos_enc"] = maskmem_pos_enc
+            maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
+            compact_current_out = {
+                "maskmem_features": torch.stack(temp_maskmem_feat, -1), ### N, 64, 64, 64
+                "maskmem_pos_enc": maskmem_pos_enc,
+                "pred_masks": torch.stack(temp_pred_masks, -1).to(storage_device, non_blocking=True), ### N, 1, 256, 256
+                "obj_ptr": torch.stack(temp_obj_ptr, -1), ### N, 256
+                "object_score_logits": torch.stack(temp_score_logit, -1),
+                "acc_score": temp_acc_score,
+                "ious": torch.stack(temp_ious, -1),
+            }
+            return compact_current_out, None, mem_pick_indexs
+
+    def _run_memory_encoder(
+        self,
+        inference_state,
+        frame_idx,
+        batch_size,
+        high_res_masks,
+        object_score_logits,
+        is_mask_from_pts,
+    ):
+        """
+        Run the memory encoder on `high_res_masks`. This is usually after applying
+        non-overlapping constraints to object scores. Since their scores changed, their
+        memory also need to be computed again with the memory encoder.
+        """
+        # Retrieve correct image features
+        _, _, current_vision_feats, _, feat_sizes = self._get_image_feature(
+            inference_state, frame_idx, batch_size
+        )
+        maskmem_features, maskmem_pos_enc = self._encode_new_memory(
+            current_vision_feats=current_vision_feats,
+            feat_sizes=feat_sizes,
+            pred_masks_high_res=high_res_masks,
+            object_score_logits=object_score_logits,
+            is_mask_from_pts=is_mask_from_pts,
+        )
+
+        # optionally offload the output to CPU memory to save GPU space
+        storage_device = inference_state["storage_device"]
+        maskmem_features = maskmem_features.to(torch.bfloat16)
+        maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
+        # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
+        maskmem_pos_enc = self._get_maskmem_pos_enc(
+            inference_state, {"maskmem_pos_enc": maskmem_pos_enc}
+        )
+        return maskmem_features, maskmem_pos_enc
+
+    def _get_maskmem_pos_enc(self, inference_state, current_out):
+        """
+        `maskmem_pos_enc` is the same across frames and objects, so we cache it as
+        a constant in the inference session to reduce session storage size.
+        """
+        model_constants = inference_state["constants"]
+        # "out_maskmem_pos_enc" should be either a list of tensors or None
+        out_maskmem_pos_enc = current_out["maskmem_pos_enc"]
+        if out_maskmem_pos_enc is not None:
+            if "maskmem_pos_enc" not in model_constants:
+                assert isinstance(out_maskmem_pos_enc, list)
+                # only take the slice for one object, since it's same across objects
+                maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
+                model_constants["maskmem_pos_enc"] = maskmem_pos_enc
+            else:
+                maskmem_pos_enc = model_constants["maskmem_pos_enc"]
+            # expand the cached maskmem_pos_enc to the actual batch size
+            batch_size = out_maskmem_pos_enc[0].size(0)
+            expanded_maskmem_pos_enc = [
+                x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc
+            ]
+        else:
+            expanded_maskmem_pos_enc = None
+        return expanded_maskmem_pos_enc
+
+    @torch.inference_mode()
+    def remove_object(self, inference_state, obj_id, strict=False, need_output=True):
+        """
+        Remove an object id from the tracking state. If strict is True, we check whether
+        the object id actually exists and raise an error if it doesn't exist.
+        """
+        old_obj_idx_to_rm = inference_state["obj_id_to_idx"].get(obj_id, None)
+        updated_frames = []
+        # Check whether this object_id to remove actually exists and possibly raise an error.
+        if old_obj_idx_to_rm is None:
+            if not strict:
+                return inference_state["obj_ids"], updated_frames
+            raise RuntimeError(
+                f"Cannot remove object id {obj_id} as it doesn't exist. "
+                f"All existing object ids: {inference_state['obj_ids']}."
+            )
+
+        # If this is the only remaining object id, we simply reset the state.
+        if len(inference_state["obj_id_to_idx"]) == 1:
+            self.reset_state(inference_state)
+            return inference_state["obj_ids"], updated_frames
+
+        # There are still remaining objects after removing this object id. In this case,
+        # we need to delete the object storage from inference state tensors.
+        # Step 0: clear the input on those frames where this object id has point or mask input
+        # (note that this step is required as it might downgrade conditioning frames to
+        # non-conditioning ones)
+        obj_input_frames_inds = set()
+        obj_input_frames_inds.update(
+            inference_state["point_inputs_per_obj"][old_obj_idx_to_rm]
+        )
+        obj_input_frames_inds.update(
+            inference_state["mask_inputs_per_obj"][old_obj_idx_to_rm]
+        )
+        for frame_idx in obj_input_frames_inds:
+            self.clear_all_prompts_in_frame(
+                inference_state, frame_idx, obj_id, need_output=False
+            )
+
+        # Step 1: Update the object id mapping (note that it must be done after Step 0,
+        # since Step 0 still requires the old object id mappings in inference_state)
+        old_obj_ids = inference_state["obj_ids"]
+        old_obj_inds = list(range(len(old_obj_ids)))
+        remain_old_obj_inds = old_obj_inds.copy()
+        remain_old_obj_inds.remove(old_obj_idx_to_rm)
+        new_obj_ids = [old_obj_ids[old_idx] for old_idx in remain_old_obj_inds]
+        new_obj_inds = list(range(len(new_obj_ids)))
+        # build new mappings
+        old_idx_to_new_idx = dict(zip(remain_old_obj_inds, new_obj_inds))
+        inference_state["obj_id_to_idx"] = dict(zip(new_obj_ids, new_obj_inds))
+        inference_state["obj_idx_to_id"] = dict(zip(new_obj_inds, new_obj_ids))
+        inference_state["obj_ids"] = new_obj_ids
+
+        # Step 2: For per-object tensor storage, we shift their obj_idx in the dict keys.
+        # (note that "consolidated_frame_inds" doesn't need to be updated in this step as
+        # it's already handled in Step 0)
+        def _map_keys(container):
+            new_kvs = []
+            for k in old_obj_inds:
+                v = container.pop(k)
+                if k in old_idx_to_new_idx:
+                    new_kvs.append((old_idx_to_new_idx[k], v))
+            container.update(new_kvs)
+
+        _map_keys(inference_state["point_inputs_per_obj"])
+        _map_keys(inference_state["mask_inputs_per_obj"])
+        _map_keys(inference_state["output_dict_per_obj"])
+        _map_keys(inference_state["temp_output_dict_per_obj"])
+
+        # Step 3: For packed tensor storage, we index the remaining ids and rebuild the per-object slices.
+        def _slice_state(output_dict, storage_key):
+            for frame_idx, out in output_dict[storage_key].items():
+                out["maskmem_features"] = out["maskmem_features"][remain_old_obj_inds]
+                out["maskmem_pos_enc"] = [
+                    x[remain_old_obj_inds] for x in out["maskmem_pos_enc"]
+                ]
+                # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
+                out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(inference_state, out)
+                out["pred_masks"] = out["pred_masks"][remain_old_obj_inds]
+                out["obj_ptr"] = out["obj_ptr"][remain_old_obj_inds]
+                out["object_score_logits"] = out["object_score_logits"][
+                    remain_old_obj_inds
+                ]
+                # also update the per-object slices
+                self._add_output_per_object(
+                    inference_state, frame_idx, out, storage_key
+                )
+
+        _slice_state(inference_state["output_dict"], "cond_frame_outputs")
+        _slice_state(inference_state["output_dict"], "non_cond_frame_outputs")
+
+        # Step 4: Further collect the outputs on those frames in `obj_input_frames_inds`, which
+        # could show an updated mask for objects previously occluded by the object being removed
+        if need_output:
+            temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
+            for frame_idx in obj_input_frames_inds:
+                is_cond = any(
+                    frame_idx in obj_temp_output_dict["cond_frame_outputs"]
+                    for obj_temp_output_dict in temp_output_dict_per_obj.values()
+                )
+                consolidated_out = self._consolidate_temp_output_across_obj(
+                    inference_state,
+                    frame_idx,
+                    is_cond=is_cond,
+                    run_mem_encoder=False,
+                    consolidate_at_video_res=True,
+                )
+                _, video_res_masks = self._get_orig_video_res_output(
+                    inference_state, consolidated_out["pred_masks_video_res"]
+                )
+                updated_frames.append((frame_idx, video_res_masks))
+
+        return inference_state["obj_ids"], updated_frames
+
+    def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
+        """
+        Remove the non-conditioning memory around the input frame. When users provide
+        correction clicks, the surrounding frames' non-conditioning memories can still
+        contain outdated object appearance information and could confuse the model.
+
+        This method clears those non-conditioning memories surrounding the interacted
+        frame to avoid giving the model both old and new information about the object.
+        """
+        r = self.memory_temporal_stride_for_eval
+        frame_idx_begin = frame_idx - r * self.num_maskmem
+        frame_idx_end = frame_idx + r * self.num_maskmem
+        output_dict = inference_state["output_dict"]
+        non_cond_frame_outputs = output_dict["non_cond_frame_outputs"]
+        for t in range(frame_idx_begin, frame_idx_end + 1):
+            non_cond_frame_outputs.pop(t, None)
+            for obj_output_dict in inference_state["output_dict_per_obj"].values():
+                obj_output_dict["non_cond_frame_outputs"].pop(t, None)
\ No newline at end of file
diff --git a/sam2/utils/__init__.py b/sam2/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae
--- /dev/null
+++ b/sam2/utils/__init__.py
@@ -0,0 +1,5 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
diff --git a/sam2/utils/__pycache__/__init__.cpython-310.pyc b/sam2/utils/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..37e6dce6d8830a63b3851f370b9906f5ca62a586
Binary files /dev/null and b/sam2/utils/__pycache__/__init__.cpython-310.pyc differ
diff --git a/sam2/utils/__pycache__/misc.cpython-310.pyc b/sam2/utils/__pycache__/misc.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..66890a1110bf0b6afa68420053e242455dacf057
Binary files /dev/null and b/sam2/utils/__pycache__/misc.cpython-310.pyc differ
diff --git a/sam2/utils/__pycache__/transforms.cpython-310.pyc b/sam2/utils/__pycache__/transforms.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9fee1f42fe5631fa4b1f1cd1b057c9ce1e6173db
Binary files /dev/null and b/sam2/utils/__pycache__/transforms.cpython-310.pyc differ
diff --git a/sam2/utils/amg.py b/sam2/utils/amg.py
new file mode 100644
index 0000000000000000000000000000000000000000..986842960cf5deca00614b7b1cde1ab77dad7e6e
--- /dev/null
+++ b/sam2/utils/amg.py
@@ -0,0 +1,348 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+from copy import deepcopy
+from itertools import product
+from typing import Any, Dict, Generator, ItemsView, List, Tuple
+
+import numpy as np
+import torch
+
+# Very lightly adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/utils/amg.py
+
+
+class MaskData:
+    """
+    A structure for storing masks and their related data in batched format.
+    Implements basic filtering and concatenation.
+    """
+
+    def __init__(self, **kwargs) -> None:
+        for v in kwargs.values():
+            assert isinstance(
+                v, (list, np.ndarray, torch.Tensor)
+            ), "MaskData only supports list, numpy arrays, and torch tensors."
+        self._stats = dict(**kwargs)
+
+    def __setitem__(self, key: str, item: Any) -> None:
+        assert isinstance(
+            item, (list, np.ndarray, torch.Tensor)
+        ), "MaskData only supports list, numpy arrays, and torch tensors."
+        self._stats[key] = item
+
+    def __delitem__(self, key: str) -> None:
+        del self._stats[key]
+
+    def __getitem__(self, key: str) -> Any:
+        return self._stats[key]
+
+    def items(self) -> ItemsView[str, Any]:
+        return self._stats.items()
+
+    def filter(self, keep: torch.Tensor) -> None:
+        for k, v in self._stats.items():
+            if v is None:
+                self._stats[k] = None
+            elif isinstance(v, torch.Tensor):
+                self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
+            elif isinstance(v, np.ndarray):
+                self._stats[k] = v[keep.detach().cpu().numpy()]
+            elif isinstance(v, list) and keep.dtype == torch.bool:
+                self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
+            elif isinstance(v, list):
+                self._stats[k] = [v[i] for i in keep]
+            else:
+                raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
+
+    def cat(self, new_stats: "MaskData") -> None:
+        for k, v in new_stats.items():
+            if k not in self._stats or self._stats[k] is None:
+                self._stats[k] = deepcopy(v)
+            elif isinstance(v, torch.Tensor):
+                self._stats[k] = torch.cat([self._stats[k], v], dim=0)
+            elif isinstance(v, np.ndarray):
+                self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
+            elif isinstance(v, list):
+                self._stats[k] = self._stats[k] + deepcopy(v)
+            else:
+                raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
+
+    def to_numpy(self) -> None:
+        for k, v in self._stats.items():
+            if isinstance(v, torch.Tensor):
+                self._stats[k] = v.float().detach().cpu().numpy()
+
+
+def is_box_near_crop_edge(
+    boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
+) -> torch.Tensor:
+    """Filter masks at the edge of a crop, but not at the edge of the original image."""
+    crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
+    orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
+    boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
+    near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
+    near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
+    near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
+    return torch.any(near_crop_edge, dim=1)
+
+
+def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
+    box_xywh = deepcopy(box_xyxy)
+    box_xywh[2] = box_xywh[2] - box_xywh[0]
+    box_xywh[3] = box_xywh[3] - box_xywh[1]
+    return box_xywh
+
+
+def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
+    assert len(args) > 0 and all(
+        len(a) == len(args[0]) for a in args
+    ), "Batched iteration must have inputs of all the same size."
+    n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
+    for b in range(n_batches):
+        yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
+
+
+def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
+    """
+    Encodes masks to an uncompressed RLE, in the format expected by
+    pycoco tools.
+    """
+    # Put in fortran order and flatten h,w
+    b, h, w = tensor.shape
+    tensor = tensor.permute(0, 2, 1).flatten(1)
+
+    # Compute change indices
+    diff = tensor[:, 1:] ^ tensor[:, :-1]
+    change_indices = diff.nonzero()
+
+    # Encode run length
+    out = []
+    for i in range(b):
+        cur_idxs = change_indices[change_indices[:, 0] == i, 1]
+        cur_idxs = torch.cat(
+            [
+                torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
+                cur_idxs + 1,
+                torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
+            ]
+        )
+        btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
+        counts = [] if tensor[i, 0] == 0 else [0]
+        counts.extend(btw_idxs.detach().cpu().tolist())
+        out.append({"size": [h, w], "counts": counts})
+    return out
+
+
+def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
+    """Compute a binary mask from an uncompressed RLE."""
+    h, w = rle["size"]
+    mask = np.empty(h * w, dtype=bool)
+    idx = 0
+    parity = False
+    for count in rle["counts"]:
+        mask[idx : idx + count] = parity
+        idx += count
+        parity ^= True
+    mask = mask.reshape(w, h)
+    return mask.transpose()  # Put in C order
+
+
+def area_from_rle(rle: Dict[str, Any]) -> int:
+    return sum(rle["counts"][1::2])
+
+
+def calculate_stability_score(
+    masks: torch.Tensor, mask_threshold: float, threshold_offset: float
+) -> torch.Tensor:
+    """
+    Computes the stability score for a batch of masks. The stability
+    score is the IoU between the binary masks obtained by thresholding
+    the predicted mask logits at high and low values.
+    """
+    # One mask is always contained inside the other.
+    # Save memory by preventing unnecessary cast to torch.int64
+    intersections = (
+        (masks > (mask_threshold + threshold_offset))
+        .sum(-1, dtype=torch.int16)
+        .sum(-1, dtype=torch.int32)
+    )
+    unions = (
+        (masks > (mask_threshold - threshold_offset))
+        .sum(-1, dtype=torch.int16)
+        .sum(-1, dtype=torch.int32)
+    )
+    return intersections / unions
+
+
+def build_point_grid(n_per_side: int) -> np.ndarray:
+    """Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
+    offset = 1 / (2 * n_per_side)
+    points_one_side = np.linspace(offset, 1 - offset, n_per_side)
+    points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
+    points_y = np.tile(points_one_side[:, None], (1, n_per_side))
+    points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
+    return points
+
+
+def build_all_layer_point_grids(
+    n_per_side: int, n_layers: int, scale_per_layer: int
+) -> List[np.ndarray]:
+    """Generates point grids for all crop layers."""
+    points_by_layer = []
+    for i in range(n_layers + 1):
+        n_points = int(n_per_side / (scale_per_layer**i))
+        points_by_layer.append(build_point_grid(n_points))
+    return points_by_layer
+
+
+def generate_crop_boxes(
+    im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
+) -> Tuple[List[List[int]], List[int]]:
+    """
+    Generates a list of crop boxes of different sizes. Each layer
+    has (2**i)**2 boxes for the ith layer.
+    """
+    crop_boxes, layer_idxs = [], []
+    im_h, im_w = im_size
+    short_side = min(im_h, im_w)
+
+    # Original image
+    crop_boxes.append([0, 0, im_w, im_h])
+    layer_idxs.append(0)
+
+    def crop_len(orig_len, n_crops, overlap):
+        return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
+
+    for i_layer in range(n_layers):
+        n_crops_per_side = 2 ** (i_layer + 1)
+        overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
+
+        crop_w = crop_len(im_w, n_crops_per_side, overlap)
+        crop_h = crop_len(im_h, n_crops_per_side, overlap)
+
+        crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
+        crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
+
+        # Crops in XYWH format
+        for x0, y0 in product(crop_box_x0, crop_box_y0):
+            box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
+            crop_boxes.append(box)
+            layer_idxs.append(i_layer + 1)
+
+    return crop_boxes, layer_idxs
+
+
+def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
+    x0, y0, _, _ = crop_box
+    offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
+    # Check if boxes has a channel dimension
+    if len(boxes.shape) == 3:
+        offset = offset.unsqueeze(1)
+    return boxes + offset
+
+
+def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
+    x0, y0, _, _ = crop_box
+    offset = torch.tensor([[x0, y0]], device=points.device)
+    # Check if points has a channel dimension
+    if len(points.shape) == 3:
+        offset = offset.unsqueeze(1)
+    return points + offset
+
+
+def uncrop_masks(
+    masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int
+) -> torch.Tensor:
+    x0, y0, x1, y1 = crop_box
+    if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
+        return masks
+    # Coordinate transform masks
+    pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
+    pad = (x0, pad_x - x0, y0, pad_y - y0)
+    return torch.nn.functional.pad(masks, pad, value=0)
+
+
+def remove_small_regions(
+    mask: np.ndarray, area_thresh: float, mode: str
+) -> Tuple[np.ndarray, bool]:
+    """
+    Removes small disconnected regions and holes in a mask. Returns the
+    mask and an indicator of if the mask has been modified.
+    """
+    import cv2  # type: ignore
+
+    assert mode in ["holes", "islands"]
+    correct_holes = mode == "holes"
+    working_mask = (correct_holes ^ mask).astype(np.uint8)
+    n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
+    sizes = stats[:, -1][1:]  # Row 0 is background label
+    small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
+    if len(small_regions) == 0:
+        return mask, False
+    fill_labels = [0] + small_regions
+    if not correct_holes:
+        fill_labels = [i for i in range(n_labels) if i not in fill_labels]
+        # If every region is below threshold, keep largest
+        if len(fill_labels) == 0:
+            fill_labels = [int(np.argmax(sizes)) + 1]
+    mask = np.isin(regions, fill_labels)
+    return mask, True
+
+
+def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
+    from pycocotools import mask as mask_utils  # type: ignore
+
+    h, w = uncompressed_rle["size"]
+    rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
+    rle["counts"] = rle["counts"].decode("utf-8")  # Necessary to serialize with json
+    return rle
+
+
+def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
+    """
+    Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
+    an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
+    """
+    # torch.max below raises an error on empty inputs, just skip in this case
+    if torch.numel(masks) == 0:
+        return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
+
+    # Normalize shape to CxHxW
+    shape = masks.shape
+    h, w = shape[-2:]
+    if len(shape) > 2:
+        masks = masks.flatten(0, -3)
+    else:
+        masks = masks.unsqueeze(0)
+
+    # Get top and bottom edges
+    in_height, _ = torch.max(masks, dim=-1)
+    in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
+    bottom_edges, _ = torch.max(in_height_coords, dim=-1)
+    in_height_coords = in_height_coords + h * (~in_height)
+    top_edges, _ = torch.min(in_height_coords, dim=-1)
+
+    # Get left and right edges
+    in_width, _ = torch.max(masks, dim=-2)
+    in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
+    right_edges, _ = torch.max(in_width_coords, dim=-1)
+    in_width_coords = in_width_coords + w * (~in_width)
+    left_edges, _ = torch.min(in_width_coords, dim=-1)
+
+    # If the mask is empty the right edge will be to the left of the left edge.
+    # Replace these boxes with [0, 0, 0, 0]
+    empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
+    out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
+    out = out * (~empty_filter).unsqueeze(-1)
+
+    # Return to original shape
+    if len(shape) > 2:
+        out = out.reshape(*shape[:-2], 4)
+    else:
+        out = out[0]
+
+    return out
diff --git a/sam2/utils/misc.py b/sam2/utils/misc.py
new file mode 100644
index 0000000000000000000000000000000000000000..6de8995a5bf751b61f07e0e9b5e1b76667bad831
--- /dev/null
+++ b/sam2/utils/misc.py
@@ -0,0 +1,350 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import os
+import warnings
+from threading import Thread
+
+import numpy as np
+import torch
+from PIL import Image
+from tqdm import tqdm
+
+
+def get_sdpa_settings():
+    if torch.cuda.is_available():
+        old_gpu = torch.cuda.get_device_properties(0).major < 7
+        # only use Flash Attention on Ampere (8.0) or newer GPUs
+        use_flash_attn = torch.cuda.get_device_properties(0).major >= 8
+        if not use_flash_attn:
+            warnings.warn(
+                "Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.",
+                category=UserWarning,
+                stacklevel=2,
+            )
+        # keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only
+        # available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases)
+        pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2])
+        if pytorch_version < (2, 2):
+            warnings.warn(
+                f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. "
+                "Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).",
+                category=UserWarning,
+                stacklevel=2,
+            )
+        math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn
+    else:
+        old_gpu = True
+        use_flash_attn = False
+        math_kernel_on = True
+
+    return old_gpu, use_flash_attn, math_kernel_on
+
+
+def get_connected_components(mask):
+    """
+    Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W).
+
+    Inputs:
+    - mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is
+            background.
+
+    Outputs:
+    - labels: A tensor of shape (N, 1, H, W) containing the connected component labels
+              for foreground pixels and 0 for background pixels.
+    - counts: A tensor of shape (N, 1, H, W) containing the area of the connected
+              components for foreground pixels and 0 for background pixels.
+    """
+    from sam2 import _C
+
+    return _C.get_connected_componnets(mask.to(torch.uint8).contiguous())
+
+
+def mask_to_box(masks: torch.Tensor):
+    """
+    compute bounding box given an input mask
+
+    Inputs:
+    - masks: [B, 1, H, W] masks, dtype=torch.Tensor
+
+    Returns:
+    - box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor
+    """
+    B, _, h, w = masks.shape
+    device = masks.device
+    xs = torch.arange(w, device=device, dtype=torch.int32)
+    ys = torch.arange(h, device=device, dtype=torch.int32)
+    grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy")
+    grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w)
+    grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w)
+    min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1)
+    max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1)
+    min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1)
+    max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1)
+    bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1)
+
+    return bbox_coords
+
+
+def _load_img_as_tensor(img_path, image_size):
+    img_pil = Image.open(img_path)
+    img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size)))
+    if img_np.dtype == np.uint8:  # np.uint8 is expected for JPEG images
+        img_np = img_np / 255.0
+    else:
+        raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}")
+    img = torch.from_numpy(img_np).permute(2, 0, 1)
+    video_width, video_height = img_pil.size  # the original video size
+    return img, video_height, video_width
+
+
+class AsyncVideoFrameLoader:
+    """
+    A list of video frames to be load asynchronously without blocking session start.
+    """
+
+    def __init__(
+        self,
+        img_paths,
+        image_size,
+        offload_video_to_cpu,
+        img_mean,
+        img_std,
+        compute_device,
+    ):
+        self.img_paths = img_paths
+        self.image_size = image_size
+        self.offload_video_to_cpu = offload_video_to_cpu
+        self.img_mean = img_mean
+        self.img_std = img_std
+        # items in `self.images` will be loaded asynchronously
+        self.images = [None] * len(img_paths)
+        # catch and raise any exceptions in the async loading thread
+        self.exception = None
+        # video_height and video_width be filled when loading the first image
+        self.video_height = None
+        self.video_width = None
+        self.compute_device = compute_device
+
+        # load the first frame to fill video_height and video_width and also
+        # to cache it (since it's most likely where the user will click)
+        self.__getitem__(0)
+
+        # load the rest of frames asynchronously without blocking the session start
+        def _load_frames():
+            try:
+                for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"):
+                    self.__getitem__(n)
+            except Exception as e:
+                self.exception = e
+
+        self.thread = Thread(target=_load_frames, daemon=True)
+        self.thread.start()
+
+    def __getitem__(self, index):
+        if self.exception is not None:
+            raise RuntimeError("Failure in frame loading thread") from self.exception
+
+        img = self.images[index]
+        if img is not None:
+            return img
+
+        img, video_height, video_width = _load_img_as_tensor(
+            self.img_paths[index], self.image_size
+        )
+        self.video_height = video_height
+        self.video_width = video_width
+        # normalize by mean and std
+        img -= self.img_mean
+        img /= self.img_std
+        if not self.offload_video_to_cpu:
+            img = img.to(self.compute_device, non_blocking=True)
+        self.images[index] = img
+        return img
+
+    def __len__(self):
+        return len(self.images)
+
+
+def load_video_frames(
+    video_path,
+    image_size,
+    offload_video_to_cpu,
+    img_mean=(0.485, 0.456, 0.406),
+    img_std=(0.229, 0.224, 0.225),
+    async_loading_frames=False,
+    compute_device=torch.device("cuda"),
+):
+    """
+    Load the video frames from video_path. The frames are resized to image_size as in
+    the model and are loaded to GPU if offload_video_to_cpu=False. This is used by the demo.
+    """
+    is_bytes = isinstance(video_path, bytes)
+    is_str = isinstance(video_path, str)
+    is_mp4_path = is_str and os.path.splitext(video_path)[-1] in [".mp4", ".MP4"]
+    if is_bytes or is_mp4_path:
+        return load_video_frames_from_video_file(
+            video_path=video_path,
+            image_size=image_size,
+            offload_video_to_cpu=offload_video_to_cpu,
+            img_mean=img_mean,
+            img_std=img_std,
+            compute_device=compute_device,
+        )
+    elif is_str and os.path.isdir(video_path):
+        return load_video_frames_from_jpg_images(
+            video_path=video_path,
+            image_size=image_size,
+            offload_video_to_cpu=offload_video_to_cpu,
+            img_mean=img_mean,
+            img_std=img_std,
+            async_loading_frames=async_loading_frames,
+            compute_device=compute_device,
+        )
+    else:
+        raise NotImplementedError(
+            "Only MP4 video and JPEG folder are supported at this moment"
+        )
+
+
+def load_video_frames_from_jpg_images(
+    video_path,
+    image_size,
+    offload_video_to_cpu,
+    img_mean=(0.485, 0.456, 0.406),
+    img_std=(0.229, 0.224, 0.225),
+    async_loading_frames=False,
+    compute_device=torch.device("cuda"),
+):
+    """
+    Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format).
+
+    The frames are resized to image_size x image_size and are loaded to GPU if
+    `offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`.
+
+    You can load a frame asynchronously by setting `async_loading_frames` to `True`.
+    """
+    if isinstance(video_path, str) and os.path.isdir(video_path):
+        jpg_folder = video_path
+    else:
+        raise NotImplementedError(
+            "Only JPEG frames are supported at this moment. For video files, you may use "
+            "ffmpeg (https://ffmpeg.org/) to extract frames into a folder of JPEG files, such as \n"
+            "```\n"
+            "ffmpeg -i <your_video>.mp4 -q:v 2 -start_number 0 <output_dir>/'%05d.jpg'\n"
+            "```\n"
+            "where `-q:v` generates high-quality JPEG frames and `-start_number 0` asks "
+            "ffmpeg to start the JPEG file from 00000.jpg."
+        )
+
+    frame_names = [
+        p
+        for p in os.listdir(jpg_folder)
+        if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
+    ]
+    frame_names.sort(key=lambda p: int(os.path.splitext(p)[0].split('frame_')[-1]))
+    # frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
+    num_frames = len(frame_names)
+    if num_frames == 0:
+        raise RuntimeError(f"no images found in {jpg_folder}")
+    img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names]
+    img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
+    img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
+
+    if async_loading_frames:
+        lazy_images = AsyncVideoFrameLoader(
+            img_paths,
+            image_size,
+            offload_video_to_cpu,
+            img_mean,
+            img_std,
+            compute_device,
+        )
+        return lazy_images, lazy_images.video_height, lazy_images.video_width
+
+    images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32)
+    for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")):
+        images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size)
+    if not offload_video_to_cpu:
+        images = images.to(compute_device)
+        img_mean = img_mean.to(compute_device)
+        img_std = img_std.to(compute_device)
+    # normalize by mean and std
+    images -= img_mean
+    images /= img_std
+    return images, video_height, video_width
+
+
+def load_video_frames_from_video_file(
+    video_path,
+    image_size,
+    offload_video_to_cpu,
+    img_mean=(0.485, 0.456, 0.406),
+    img_std=(0.229, 0.224, 0.225),
+    compute_device=torch.device("cuda"),
+):
+    """Load the video frames from a video file."""
+    import decord
+
+    img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
+    img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
+    # Get the original video height and width
+    decord.bridge.set_bridge("torch")
+    video_height, video_width, _ = decord.VideoReader(video_path).next().shape
+    # Iterate over all frames in the video
+    images = []
+    for frame in decord.VideoReader(video_path, width=image_size, height=image_size):
+        images.append(frame.permute(2, 0, 1))
+
+    images = torch.stack(images, dim=0).float() / 255.0
+    if not offload_video_to_cpu:
+        images = images.to(compute_device)
+        img_mean = img_mean.to(compute_device)
+        img_std = img_std.to(compute_device)
+    # normalize by mean and std
+    images -= img_mean
+    images /= img_std
+    return images, video_height, video_width
+
+
+def fill_holes_in_mask_scores(mask, max_area):
+    """
+    A post processor to fill small holes in mask scores with area under `max_area`.
+    """
+    # Holes are those connected components in background with area <= self.max_area
+    # (background regions are those with mask scores <= 0)
+    assert max_area > 0, "max_area must be positive"
+
+    input_mask = mask
+    try:
+        labels, areas = get_connected_components(mask <= 0)
+        is_hole = (labels > 0) & (areas <= max_area)
+        # We fill holes with a small positive mask score (0.1) to change them to foreground.
+        mask = torch.where(is_hole, 0.1, mask)
+    except Exception as e:
+        # Skip the post-processing step on removing small holes if the CUDA kernel fails
+        warnings.warn(
+            f"{e}\n\nSkipping the post-processing step due to the error above. You can "
+            "still use SAM 2 and it's OK to ignore the error above, although some post-processing "
+            "functionality may be limited (which doesn't affect the results in most cases; see "
+            "https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).",
+            category=UserWarning,
+            stacklevel=2,
+        )
+        mask = input_mask
+
+    return mask
+
+
+def concat_points(old_point_inputs, new_points, new_labels):
+    """Add new points and labels to previous point inputs (add at the end)."""
+    if old_point_inputs is None:
+        points, labels = new_points, new_labels
+    else:
+        points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1)
+        labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1)
+
+    return {"point_coords": points, "point_labels": labels}
diff --git a/sam2/utils/transforms.py b/sam2/utils/transforms.py
new file mode 100644
index 0000000000000000000000000000000000000000..cc17bebfab104b659c5469e8434cf357ae7e24b6
--- /dev/null
+++ b/sam2/utils/transforms.py
@@ -0,0 +1,118 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import warnings
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torchvision.transforms import Normalize, Resize, ToTensor
+
+
+class SAM2Transforms(nn.Module):
+    def __init__(
+        self, resolution, mask_threshold, max_hole_area=0.0, max_sprinkle_area=0.0
+    ):
+        """
+        Transforms for SAM2.
+        """
+        super().__init__()
+        self.resolution = resolution
+        self.mask_threshold = mask_threshold
+        self.max_hole_area = max_hole_area
+        self.max_sprinkle_area = max_sprinkle_area
+        self.mean = [0.485, 0.456, 0.406]
+        self.std = [0.229, 0.224, 0.225]
+        self.to_tensor = ToTensor()
+        self.transforms = torch.jit.script(
+            nn.Sequential(
+                Resize((self.resolution, self.resolution)),
+                Normalize(self.mean, self.std),
+            )
+        )
+
+    def __call__(self, x):
+        x = self.to_tensor(x)
+        return self.transforms(x)
+
+    def forward_batch(self, img_list):
+        img_batch = [self.transforms(self.to_tensor(img)) for img in img_list]
+        img_batch = torch.stack(img_batch, dim=0)
+        return img_batch
+
+    def transform_coords(
+        self, coords: torch.Tensor, normalize=False, orig_hw=None
+    ) -> torch.Tensor:
+        """
+        Expects a torch tensor with length 2 in the last dimension. The coordinates can be in absolute image or normalized coordinates,
+        If the coords are in absolute image coordinates, normalize should be set to True and original image size is required.
+
+        Returns
+            Un-normalized coordinates in the range of [0, 1] which is expected by the SAM2 model.
+        """
+        if normalize:
+            assert orig_hw is not None
+            h, w = orig_hw
+            coords = coords.clone()
+            coords[..., 0] = coords[..., 0] / w
+            coords[..., 1] = coords[..., 1] / h
+
+        coords = coords * self.resolution  # unnormalize coords
+        return coords
+
+    def transform_boxes(
+        self, boxes: torch.Tensor, normalize=False, orig_hw=None
+    ) -> torch.Tensor:
+        """
+        Expects a tensor of shape Bx4. The coordinates can be in absolute image or normalized coordinates,
+        if the coords are in absolute image coordinates, normalize should be set to True and original image size is required.
+        """
+        boxes = self.transform_coords(boxes.reshape(-1, 2, 2), normalize, orig_hw)
+        return boxes
+
+    def postprocess_masks(self, masks: torch.Tensor, orig_hw) -> torch.Tensor:
+        """
+        Perform PostProcessing on output masks.
+        """
+        from sam2.utils.misc import get_connected_components
+
+        masks = masks.float()
+        input_masks = masks
+        mask_flat = masks.flatten(0, 1).unsqueeze(1)  # flatten as 1-channel image
+        try:
+            if self.max_hole_area > 0:
+                # Holes are those connected components in background with area <= self.fill_hole_area
+                # (background regions are those with mask scores <= self.mask_threshold)
+                labels, areas = get_connected_components(
+                    mask_flat <= self.mask_threshold
+                )
+                is_hole = (labels > 0) & (areas <= self.max_hole_area)
+                is_hole = is_hole.reshape_as(masks)
+                # We fill holes with a small positive mask score (10.0) to change them to foreground.
+                masks = torch.where(is_hole, self.mask_threshold + 10.0, masks)
+
+            if self.max_sprinkle_area > 0:
+                labels, areas = get_connected_components(
+                    mask_flat > self.mask_threshold
+                )
+                is_hole = (labels > 0) & (areas <= self.max_sprinkle_area)
+                is_hole = is_hole.reshape_as(masks)
+                # We fill holes with negative mask score (-10.0) to change them to background.
+                masks = torch.where(is_hole, self.mask_threshold - 10.0, masks)
+        except Exception as e:
+            # Skip the post-processing step if the CUDA kernel fails
+            warnings.warn(
+                f"{e}\n\nSkipping the post-processing step due to the error above. You can "
+                "still use SAM 2 and it's OK to ignore the error above, although some post-processing "
+                "functionality may be limited (which doesn't affect the results in most cases; see "
+                "https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).",
+                category=UserWarning,
+                stacklevel=2,
+            )
+            masks = input_masks
+
+        masks = F.interpolate(masks, orig_hw, mode="bilinear", align_corners=False)
+        return masks
diff --git a/tools/README.md b/tools/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..a8ad2d65483ed3afe6de85133f2cf3c8689a0048
--- /dev/null
+++ b/tools/README.md
@@ -0,0 +1,36 @@
+## SAM 2 toolkits
+
+This directory provides toolkits for additional SAM 2 use cases.
+
+### Semi-supervised VOS inference
+
+The `vos_inference.py` script can be used to generate predictions for semi-supervised video object segmentation (VOS) evaluation on datasets such as [DAVIS](https://davischallenge.org/index.html), [MOSE](https://henghuiding.github.io/MOSE/) or the SA-V dataset.
+
+After installing SAM 2 and its dependencies, it can be used as follows ([DAVIS 2017 dataset](https://davischallenge.org/davis2017/code.html) as an example). This script saves the prediction PNG files to the `--output_mask_dir`.
+```bash
+python ./tools/vos_inference.py \
+  --sam2_cfg sam2_hiera_b+.yaml \
+  --sam2_checkpoint ./checkpoints/sam2_hiera_base_plus.pt \
+  --base_video_dir /path-to-davis-2017/JPEGImages/480p \
+  --input_mask_dir /path-to-davis-2017/Annotations/480p \
+  --video_list_file /path-to-davis-2017/ImageSets/2017/val.txt \
+  --output_mask_dir ./outputs/davis_2017_pred_pngs
+```
+(replace `/path-to-davis-2017` with the path to DAVIS 2017 dataset)
+
+To evaluate on the SA-V dataset with per-object PNG files for the object masks, we need to **add the `--per_obj_png_file` flag** as follows (using SA-V val as an example). This script will also save per-object PNG files for the output masks under the `--per_obj_png_file` flag.
+```bash
+python ./tools/vos_inference.py \
+  --sam2_cfg sam2_hiera_b+.yaml \
+  --sam2_checkpoint ./checkpoints/sam2_hiera_base_plus.pt \
+  --base_video_dir /path-to-sav-val/JPEGImages_24fps \
+  --input_mask_dir /path-to-sav-val/Annotations_6fps \
+  --video_list_file /path-to-sav-val/sav_val.txt \
+  --per_obj_png_file \
+  --output_mask_dir ./outputs/sav_val_pred_pngs
+```
+(replace `/path-to-sav-val` with the path to SA-V val)
+
+Then, we can use the evaluation tools or servers for each dataset to get the performance of the prediction PNG files above.
+
+**Note: a limitation of the `vos_inference.py` script above is that currently it only supports VOS datasets where all objects to track already appear on frame 0 in each video** (and therefore it doesn't apply to some datasets such as [LVOS](https://lingyihongfd.github.io/lvos.github.io/) that have objects only appearing in the middle of a video).
diff --git a/tools/vos_inference.py b/tools/vos_inference.py
new file mode 100644
index 0000000000000000000000000000000000000000..6348f4bf0af9cb2f6cf8492376ad34c5ef392b8d
--- /dev/null
+++ b/tools/vos_inference.py
@@ -0,0 +1,320 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import argparse
+import os
+
+import numpy as np
+import torch
+from PIL import Image
+from sam2.build_sam import build_sam2_video_predictor
+
+
+# the PNG palette for DAVIS 2017 dataset
+DAVIS_PALETTE = b"\x00\x00\x00\x80\x00\x00\x00\x80\x00\x80\x80\x00\x00\x00\x80\x80\x00\x80\x00\x80\x80\x80\x80\x80@\x00\x00\xc0\x00\x00@\x80\x00\xc0\x80\x00@\x00\x80\xc0\x00\x80@\x80\x80\xc0\x80\x80\x00@\x00\x80@\x00\x00\xc0\x00\x80\xc0\x00\x00@\x80\x80@\x80\x00\xc0\x80\x80\xc0\x80@@\x00\xc0@\x00@\xc0\x00\xc0\xc0\x00@@\x80\xc0@\x80@\xc0\x80\xc0\xc0\x80\x00\x00@\x80\x00@\x00\x80@\x80\x80@\x00\x00\xc0\x80\x00\xc0\x00\x80\xc0\x80\x80\xc0@\x00@\xc0\x00@@\x80@\xc0\x80@@\x00\xc0\xc0\x00\xc0@\x80\xc0\xc0\x80\xc0\x00@@\x80@@\x00\xc0@\x80\xc0@\x00@\xc0\x80@\xc0\x00\xc0\xc0\x80\xc0\xc0@@@\xc0@@@\xc0@\xc0\xc0@@@\xc0\xc0@\xc0@\xc0\xc0\xc0\xc0\xc0 \x00\x00\xa0\x00\x00 \x80\x00\xa0\x80\x00 \x00\x80\xa0\x00\x80 \x80\x80\xa0\x80\x80`\x00\x00\xe0\x00\x00`\x80\x00\xe0\x80\x00`\x00\x80\xe0\x00\x80`\x80\x80\xe0\x80\x80 @\x00\xa0@\x00 \xc0\x00\xa0\xc0\x00 @\x80\xa0@\x80 \xc0\x80\xa0\xc0\x80`@\x00\xe0@\x00`\xc0\x00\xe0\xc0\x00`@\x80\xe0@\x80`\xc0\x80\xe0\xc0\x80 \x00@\xa0\x00@ \x80@\xa0\x80@ \x00\xc0\xa0\x00\xc0 \x80\xc0\xa0\x80\xc0`\x00@\xe0\x00@`\x80@\xe0\x80@`\x00\xc0\xe0\x00\xc0`\x80\xc0\xe0\x80\xc0 @@\xa0@@ \xc0@\xa0\xc0@ @\xc0\xa0@\xc0 \xc0\xc0\xa0\xc0\xc0`@@\xe0@@`\xc0@\xe0\xc0@`@\xc0\xe0@\xc0`\xc0\xc0\xe0\xc0\xc0\x00 \x00\x80 \x00\x00\xa0\x00\x80\xa0\x00\x00 \x80\x80 \x80\x00\xa0\x80\x80\xa0\x80@ \x00\xc0 \x00@\xa0\x00\xc0\xa0\x00@ \x80\xc0 \x80@\xa0\x80\xc0\xa0\x80\x00`\x00\x80`\x00\x00\xe0\x00\x80\xe0\x00\x00`\x80\x80`\x80\x00\xe0\x80\x80\xe0\x80@`\x00\xc0`\x00@\xe0\x00\xc0\xe0\x00@`\x80\xc0`\x80@\xe0\x80\xc0\xe0\x80\x00 @\x80 @\x00\xa0@\x80\xa0@\x00 \xc0\x80 \xc0\x00\xa0\xc0\x80\xa0\xc0@ @\xc0 @@\xa0@\xc0\xa0@@ \xc0\xc0 \xc0@\xa0\xc0\xc0\xa0\xc0\x00`@\x80`@\x00\xe0@\x80\xe0@\x00`\xc0\x80`\xc0\x00\xe0\xc0\x80\xe0\xc0@`@\xc0`@@\xe0@\xc0\xe0@@`\xc0\xc0`\xc0@\xe0\xc0\xc0\xe0\xc0  \x00\xa0 \x00 \xa0\x00\xa0\xa0\x00  \x80\xa0 \x80 \xa0\x80\xa0\xa0\x80` \x00\xe0 \x00`\xa0\x00\xe0\xa0\x00` \x80\xe0 \x80`\xa0\x80\xe0\xa0\x80 `\x00\xa0`\x00 \xe0\x00\xa0\xe0\x00 `\x80\xa0`\x80 \xe0\x80\xa0\xe0\x80``\x00\xe0`\x00`\xe0\x00\xe0\xe0\x00``\x80\xe0`\x80`\xe0\x80\xe0\xe0\x80  @\xa0 @ \xa0@\xa0\xa0@  \xc0\xa0 \xc0 \xa0\xc0\xa0\xa0\xc0` @\xe0 @`\xa0@\xe0\xa0@` \xc0\xe0 \xc0`\xa0\xc0\xe0\xa0\xc0 `@\xa0`@ \xe0@\xa0\xe0@ `\xc0\xa0`\xc0 \xe0\xc0\xa0\xe0\xc0``@\xe0`@`\xe0@\xe0\xe0@``\xc0\xe0`\xc0`\xe0\xc0\xe0\xe0\xc0"
+
+
+def load_ann_png(path):
+    """Load a PNG file as a mask and its palette."""
+    mask = Image.open(path)
+    palette = mask.getpalette()
+    mask = np.array(mask).astype(np.uint8)
+    return mask, palette
+
+
+def save_ann_png(path, mask, palette):
+    """Save a mask as a PNG file with the given palette."""
+    assert mask.dtype == np.uint8
+    assert mask.ndim == 2
+    output_mask = Image.fromarray(mask)
+    output_mask.putpalette(palette)
+    output_mask.save(path)
+
+
+def get_per_obj_mask(mask):
+    """Split a mask into per-object masks."""
+    object_ids = np.unique(mask)
+    object_ids = object_ids[object_ids > 0].tolist()
+    per_obj_mask = {object_id: (mask == object_id) for object_id in object_ids}
+    return per_obj_mask
+
+
+def put_per_obj_mask(per_obj_mask, height, width):
+    """Combine per-object masks into a single mask."""
+    mask = np.zeros((height, width), dtype=np.uint8)
+    object_ids = sorted(per_obj_mask)[::-1]
+    for object_id in object_ids:
+        object_mask = per_obj_mask[object_id]
+        object_mask = object_mask.reshape(height, width)
+        mask[object_mask] = object_id
+    return mask
+
+
+def load_masks_from_dir(input_mask_dir, video_name, frame_name, per_obj_png_file):
+    """Load masks from a directory as a dict of per-object masks."""
+    if not per_obj_png_file:
+        input_mask_path = os.path.join(input_mask_dir, video_name, f"{frame_name}.png")
+        input_mask, input_palette = load_ann_png(input_mask_path)
+        per_obj_input_mask = get_per_obj_mask(input_mask)
+    else:
+        per_obj_input_mask = {}
+        # each object is a directory in "{object_id:%03d}" format
+        for object_name in os.listdir(os.path.join(input_mask_dir, video_name)):
+            object_id = int(object_name)
+            input_mask_path = os.path.join(
+                input_mask_dir, video_name, object_name, f"{frame_name}.png"
+            )
+            input_mask, input_palette = load_ann_png(input_mask_path)
+            per_obj_input_mask[object_id] = input_mask > 0
+
+    return per_obj_input_mask, input_palette
+
+
+def save_masks_to_dir(
+    output_mask_dir,
+    video_name,
+    frame_name,
+    per_obj_output_mask,
+    height,
+    width,
+    per_obj_png_file,
+    output_palette,
+):
+    """Save masks to a directory as PNG files."""
+    os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
+    if not per_obj_png_file:
+        output_mask = put_per_obj_mask(per_obj_output_mask, height, width)
+        output_mask_path = os.path.join(
+            output_mask_dir, video_name, f"{frame_name}.png"
+        )
+        save_ann_png(output_mask_path, output_mask, output_palette)
+    else:
+        for object_id, object_mask in per_obj_output_mask.items():
+            object_name = f"{object_id:03d}"
+            os.makedirs(
+                os.path.join(output_mask_dir, video_name, object_name),
+                exist_ok=True,
+            )
+            output_mask = object_mask.reshape(height, width).astype(np.uint8)
+            output_mask_path = os.path.join(
+                output_mask_dir, video_name, object_name, f"{frame_name}.png"
+            )
+            save_ann_png(output_mask_path, output_mask, output_palette)
+
+
+@torch.inference_mode()
+@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
+def vos_inference(
+    predictor,
+    base_video_dir,
+    input_mask_dir,
+    output_mask_dir,
+    video_name,
+    score_thresh=0.0,
+    use_all_masks=False,
+    per_obj_png_file=False,
+):
+    """Run VOS inference on a single video with the given predictor."""
+    # load the video frames and initialize the inference state on this video
+    video_dir = os.path.join(base_video_dir, video_name)
+    frame_names = [
+        os.path.splitext(p)[0]
+        for p in os.listdir(video_dir)
+        if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
+    ]
+    frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
+    inference_state = predictor.init_state(
+        video_path=video_dir, async_loading_frames=False
+    )
+    height = inference_state["video_height"]
+    width = inference_state["video_width"]
+    input_palette = None
+
+    # fetch mask inputs from input_mask_dir (either only mask for the first frame, or all available masks)
+    if not use_all_masks:
+        # use only the first video's ground-truth mask as the input mask
+        input_frame_inds = [0]
+    else:
+        # use all mask files available in the input_mask_dir as the input masks
+        if not per_obj_png_file:
+            input_frame_inds = [
+                idx
+                for idx, name in enumerate(frame_names)
+                if os.path.exists(
+                    os.path.join(input_mask_dir, video_name, f"{name}.png")
+                )
+            ]
+        else:
+            input_frame_inds = [
+                idx
+                for object_name in os.listdir(os.path.join(input_mask_dir, video_name))
+                for idx, name in enumerate(frame_names)
+                if os.path.exists(
+                    os.path.join(input_mask_dir, video_name, object_name, f"{name}.png")
+                )
+            ]
+        input_frame_inds = sorted(set(input_frame_inds))
+
+    # add those input masks to SAM 2 inference state before propagation
+    for input_frame_idx in input_frame_inds:
+        per_obj_input_mask, input_palette = load_masks_from_dir(
+            input_mask_dir=input_mask_dir,
+            video_name=video_name,
+            frame_name=frame_names[input_frame_idx],
+            per_obj_png_file=per_obj_png_file,
+        )
+        for object_id, object_mask in per_obj_input_mask.items():
+            predictor.add_new_mask(
+                inference_state=inference_state,
+                frame_idx=input_frame_idx,
+                obj_id=object_id,
+                mask=object_mask,
+            )
+
+    # run propagation throughout the video and collect the results in a dict
+    os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True)
+    output_palette = input_palette or DAVIS_PALETTE
+    video_segments = {}  # video_segments contains the per-frame segmentation results
+    for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
+        inference_state
+    ):
+        per_obj_output_mask = {
+            out_obj_id: (out_mask_logits[i] > score_thresh).cpu().numpy()
+            for i, out_obj_id in enumerate(out_obj_ids)
+        }
+        video_segments[out_frame_idx] = per_obj_output_mask
+
+    # write the output masks as palette PNG files to output_mask_dir
+    for out_frame_idx, per_obj_output_mask in video_segments.items():
+        save_masks_to_dir(
+            output_mask_dir=output_mask_dir,
+            video_name=video_name,
+            frame_name=frame_names[out_frame_idx],
+            per_obj_output_mask=per_obj_output_mask,
+            height=height,
+            width=width,
+            per_obj_png_file=per_obj_png_file,
+            output_palette=output_palette,
+        )
+
+
+def main():
+    parser = argparse.ArgumentParser()
+    parser.add_argument(
+        "--sam2_cfg",
+        type=str,
+        default="sam2_hiera_b+.yaml",
+        help="SAM 2 model configuration file",
+    )
+    parser.add_argument(
+        "--sam2_checkpoint",
+        type=str,
+        default="./checkpoints/sam2_hiera_b+.pt",
+        help="path to the SAM 2 model checkpoint",
+    )
+    parser.add_argument(
+        "--base_video_dir",
+        type=str,
+        required=True,
+        help="directory containing videos (as JPEG files) to run VOS prediction on",
+    )
+    parser.add_argument(
+        "--input_mask_dir",
+        type=str,
+        required=True,
+        help="directory containing input masks (as PNG files) of each video",
+    )
+    parser.add_argument(
+        "--video_list_file",
+        type=str,
+        default=None,
+        help="text file containing the list of video names to run VOS prediction on",
+    )
+    parser.add_argument(
+        "--output_mask_dir",
+        type=str,
+        required=True,
+        help="directory to save the output masks (as PNG files)",
+    )
+    parser.add_argument(
+        "--score_thresh",
+        type=float,
+        default=0.0,
+        help="threshold for the output mask logits (default: 0.0)",
+    )
+    parser.add_argument(
+        "--use_all_masks",
+        action="store_true",
+        help="whether to use all available PNG files in input_mask_dir "
+        "(default without this flag: just the first PNG file as input to the SAM 2 model; "
+        "usually we don't need this flag, since semi-supervised VOS evaluation usually takes input from the first frame only)",
+    )
+    parser.add_argument(
+        "--per_obj_png_file",
+        action="store_true",
+        help="whether use separate per-object PNG files for input and output masks "
+        "(default without this flag: all object masks are packed into a single PNG file on each frame following DAVIS format; "
+        "note that the SA-V dataset stores each object mask as an individual PNG file and requires this flag)",
+    )
+    parser.add_argument(
+        "--apply_postprocessing",
+        action="store_true",
+        help="whether to apply postprocessing (e.g. hole-filling) to the output masks "
+        "(we don't apply such post-processing in the SAM 2 model evaluation)",
+    )
+    args = parser.parse_args()
+
+    # if we use per-object PNG files, they could possibly overlap in inputs and outputs
+    hydra_overrides_extra = [
+        "++model.non_overlap_masks=" + ("false" if args.per_obj_png_file else "true")
+    ]
+    predictor = build_sam2_video_predictor(
+        config_file=args.sam2_cfg,
+        ckpt_path=args.sam2_checkpoint,
+        apply_postprocessing=args.apply_postprocessing,
+        hydra_overrides_extra=hydra_overrides_extra,
+    )
+
+    if args.use_all_masks:
+        print("using all available masks in input_mask_dir as input to the SAM 2 model")
+    else:
+        print(
+            "using only the first frame's mask in input_mask_dir as input to the SAM 2 model"
+        )
+    # if a video list file is provided, read the video names from the file
+    # (otherwise, we use all subdirectories in base_video_dir)
+    if args.video_list_file is not None:
+        with open(args.video_list_file, "r") as f:
+            video_names = [v.strip() for v in f.readlines()]
+    else:
+        video_names = [
+            p
+            for p in os.listdir(args.base_video_dir)
+            if os.path.isdir(os.path.join(args.base_video_dir, p))
+        ]
+    print(f"running VOS prediction on {len(video_names)} videos:\n{video_names}")
+
+    for n_video, video_name in enumerate(video_names):
+        print(f"\n{n_video + 1}/{len(video_names)} - running on {video_name}")
+        vos_inference(
+            predictor=predictor,
+            base_video_dir=args.base_video_dir,
+            input_mask_dir=args.input_mask_dir,
+            output_mask_dir=args.output_mask_dir,
+            video_name=video_name,
+            score_thresh=args.score_thresh,
+            use_all_masks=args.use_all_masks,
+            per_obj_png_file=args.per_obj_png_file,
+        )
+
+    print(
+        f"completed VOS prediction on {len(video_names)} videos -- "
+        f"output masks saved to {args.output_mask_dir}"
+    )
+
+
+if __name__ == "__main__":
+    main()