Spaces:
Runtime error
Runtime error
##### image pred | |
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer | |
import torch | |
from PIL import Image | |
import pathlib | |
import pandas as pd | |
import numpy as np | |
from IPython.core.display import HTML | |
import os | |
import requests | |
class Image2Caption(object): | |
def __init__(self ,model_path = "nlpconnect/vit-gpt2-image-captioning", | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu"), | |
overwrite_encoder_checkpoint_path = None, | |
overwrite_token_model_path = None | |
): | |
assert type(overwrite_token_model_path) == type("") or overwrite_token_model_path is None | |
assert type(overwrite_encoder_checkpoint_path) == type("") or overwrite_encoder_checkpoint_path is None | |
if overwrite_token_model_path is None: | |
overwrite_token_model_path = model_path | |
if overwrite_encoder_checkpoint_path is None: | |
overwrite_encoder_checkpoint_path = model_path | |
self.device = device | |
self.model = VisionEncoderDecoderModel.from_pretrained(model_path) | |
self.feature_extractor = ViTFeatureExtractor.from_pretrained(overwrite_encoder_checkpoint_path) | |
self.tokenizer = AutoTokenizer.from_pretrained(overwrite_token_model_path) | |
self.model = self.model.to(self.device) | |
def predict_to_df(self, image_paths): | |
img_caption_pred = self.predict_step(image_paths) | |
img_cation_df = pd.DataFrame(list(zip(image_paths, img_caption_pred))) | |
img_cation_df.columns = ["img", "caption"] | |
return img_cation_df | |
#img_cation_df.to_html(escape=False, formatters=dict(Country=path_to_image_html)) | |
def predict_step(self ,image_paths, max_length = 128, num_beams = 4): | |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} | |
images = [] | |
for image_path in image_paths: | |
#i_image = Image.open(image_path) | |
if image_path.startswith("http"): | |
i_image = Image.open( | |
requests.get(image_path, stream=True).raw | |
) | |
else: | |
i_image = Image.open(image_path) | |
if i_image.mode != "RGB": | |
i_image = i_image.convert(mode="RGB") | |
images.append(i_image) | |
pixel_values = self.feature_extractor(images=images, return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(self.device) | |
output_ids = self.model.generate(pixel_values, **gen_kwargs) | |
preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
preds = [pred.strip() for pred in preds] | |
return preds | |
def path_to_image_html(path): | |
return '<img src="'+ path + '" width="60" >' | |
if __name__ == "__main__": | |
i2c_obj = Image2Caption() | |
i2c_tiny_zh_obj = Image2Caption("svjack/vit-gpt-diffusion-zh", | |
overwrite_encoder_checkpoint_path = "google/vit-base-patch16-224", | |
overwrite_token_model_path = "IDEA-CCNL/Wenzhong-GPT2-110M" | |
) | |