File size: 6,954 Bytes
98fed26
2960559
98fed26
 
 
 
2960559
98fed26
 
2960559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fed26
d5d4264
2960559
d5d4264
2960559
98fed26
d5d4264
 
 
 
 
 
 
98fed26
d5d4264
 
 
 
 
 
 
 
 
2960559
d5d4264
 
2960559
 
d5d4264
 
2960559
d5d4264
 
 
 
 
 
 
2960559
d5d4264
 
 
 
2960559
d5d4264
 
 
 
 
 
 
 
 
 
98fed26
 
2960559
 
 
 
 
98fed26
d5d4264
2960559
d5d4264
 
2960559
 
 
d5d4264
2960559
98fed26
2960559
98fed26
 
 
2960559
 
 
98fed26
 
2960559
98fed26
 
d5d4264
2960559
 
 
98fed26
2960559
98fed26
2960559
 
 
98fed26
2960559
98fed26
2960559
98fed26
d5d4264
98fed26
2960559
98fed26
 
 
 
 
d5d4264
98fed26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2960559
 
 
 
 
 
98fed26
 
 
 
 
 
 
 
 
 
 
2960559
d5d4264
677eb02
98fed26
 
 
 
 
2960559
 
 
 
 
 
 
 
98fed26
2960559
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import sys
import shutil
import uuid
import subprocess
import gradio as gr
import cv2  # 用于检查视频帧数
from glob import glob

from huggingface_hub import snapshot_download, hf_hub_download

# Download models
os.makedirs("pretrained_weights", exist_ok=True)

# List of subdirectories to create inside "checkpoints"
subfolders = [
    "stable-video-diffusion-img2vid-xt"
]

# Create each subdirectory
for subfolder in subfolders:
    os.makedirs(os.path.join("pretrained_weights", subfolder), exist_ok=True)

snapshot_download(
    repo_id="stabilityai/stable-video-diffusion-img2vid",
    local_dir="./pretrained_weights/stable-video-diffusion-img2vid-xt"
)

snapshot_download(
    repo_id="Yhmeng1106/anidoc",
    local_dir="./pretrained_weights"
)

hf_hub_download(
    repo_id="facebook/cotracker",
    filename="cotracker2.pth",
    local_dir="./pretrained_weights"
)

def normalize_path(path: str) -> str:
    return path
    """标准化路径,将Windows路径转换为正斜杠形式"""
    return os.path.abspath(path).replace('\\', '/')

def check_video_frames(video_path: str) -> int:
    """检查视频帧数"""
    video_path = normalize_path(video_path)
    cap = cv2.VideoCapture(video_path)
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    cap.release()
    return frame_count

def preprocess_video(video_path: str) -> str:
    """预处理视频到14帧"""
    try:
        video_path = normalize_path(video_path)
        unique_id = str(uuid.uuid4())
        temp_dir = "outputs"
        output_dir = os.path.join(temp_dir, f"processed_{unique_id}")
        output_dir = normalize_path(output_dir)
        os.makedirs(output_dir, exist_ok=True)

        print(f"Processing video: {video_path}")
        print(f"Output directory: {output_dir}")

        # 调用外部脚本处理视频
        result = subprocess.run(
            [
                "python", "process_video_to_14frames.py",
                "--input", video_path,
                "--output", output_dir
            ],
            check=True,
            capture_output=True,
            text=True
        )

        if result.stdout:
            print(f"Preprocessing stdout: {result.stdout}")
        if result.stderr:
            print(f"Preprocessing stderr: {result.stderr}")

        # 获取处理后的视频路径
        processed_videos = glob(os.path.join(output_dir, "*.mp4"))
        if not processed_videos:
            raise gr.Error("Failed to process video: No output video found")
        return normalize_path(processed_videos[0])
    except subprocess.CalledProcessError as e:
        print(f"Preprocessing stderr: {e.stderr}")
        raise gr.Error(f"Failed to preprocess video: {e.stderr}")
    except Exception as e:
        raise gr.Error(f"Error during video preprocessing: {str(e)}")

def generate(control_sequence, ref_image):
    control_image = control_sequence  # "data_test/sample4.mp4"
    ref_image = ref_image  # "data_test/sample4.png"
    unique_id = str(uuid.uuid4())
    output_dir = f"results_{unique_id}"

    try:
        # 检查视频帧数
        frame_count = check_video_frames(control_image)
        if frame_count != 14:
            print(f"Video has {frame_count} frames, preprocessing to 14 frames...")
            control_image = preprocess_video(control_image)
            print(f"Preprocessed video saved to: {control_image}")

        # 运行推理命令
        subprocess.run(
            [
                "python", "scripts_infer/anidoc_inference.py",
                "--all_sketch",
                "--matching",
                "--tracking",
                "--control_image", f"{control_image}",
                "--ref_image", f"{ref_image}",
                "--output_dir", f"{output_dir}",
                "--max_point", "10",
            ],
            check=True
        )

        # 搜索输出视频
        output_video = glob(os.path.join(output_dir, "*.mp4"))
        print(output_video)

        if output_video:
            output_video_path = output_video[0]  # 获取第一个匹配
        else:
            output_video_path = None

        print(output_video_path)
        return output_video_path

    except subprocess.CalledProcessError as e:
        raise gr.Error(f"Error during inference: {str(e)}")
    except Exception as e:
        raise gr.Error(f"Error: {str(e)}")

css = """
div#col-container{
    margin: 0 auto;
    max-width: 982px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# AniDoc: Animation Creation Made Easier")
        gr.Markdown("AniDoc colorizes a sequence of sketches based on a character design reference with high fidelity, even when the sketches significantly differ in pose and scale.")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href="https://github.com/yihao-meng/AniDoc">
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href="https://yihao-meng.github.io/AniDoc_demo/">
                <img src='https://img.shields.io/badge/Project-Page-green'>
            </a>
            <a href="https://arxiv.org/pdf/2412.14173">
                <img src='https://img.shields.io/badge/ArXiv-Paper-red'>
            </a>
            <a href="https://huggingface.co/spaces/fffiloni/AniDoc?duplicate=true">
                <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
            </a>
            <a href="https://huggingface.co/fffiloni">
                <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
            </a>
        </div>
        """)
        with gr.Row():
            with gr.Column():
                control_sequence = gr.Video(label="Control Sequence", format="mp4")
                ref_image = gr.Image(label="Reference Image", type="filepath")
                submit_btn = gr.Button("Submit")
            with gr.Column():
                video_result = gr.Video(label="Result")

                gr.Examples(
                    examples=[
                        ["data_test/sample5.mp4", "data_test/sample5.png"],
                        ["data_test/sample6.mp4", "data_test/sample6.png"],
                        ["data_test/sample1.mp4", "data_test/sample1.png"],
                        ["data_test/sample2.mp4", "data_test/sample2.png"],
                        ["data_test/sample3.mp4", "data_test/sample3.png"],
                        ["data_test/sample4.mp4", "data_test/sample4.png"]
                    ],
                    inputs=[control_sequence, ref_image]
                )

    submit_btn.click(
        fn=generate,
        inputs=[control_sequence, ref_image],
        outputs=[video_result]
    )

demo.queue().launch(show_api=False, show_error=True, share=True)