|
import os |
|
from sentence_transformers import SentenceTransformer, InputExample, losses |
|
from torch.utils.data import DataLoader |
|
import random |
|
from langchain_openai import OpenAIEmbeddings |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
import fitz |
|
from dotenv import load_dotenv |
|
from huggingface_hub import login, HfApi |
|
import traceback |
|
|
|
|
|
|
|
|
|
load_dotenv() |
|
login(token=os.getenv("HF_TOKEN"), add_to_git_credential=True) |
|
|
|
|
|
def extract_text_from_pdf(pdf_path): |
|
doc = fitz.open(pdf_path) |
|
text = "" |
|
for page in doc: |
|
text += page.get_text() |
|
return text |
|
|
|
def chunk_text(text, themes): |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) |
|
chunks = text_splitter.split_text(text) |
|
thematic_chunks = {theme: [] for theme in themes} |
|
thematic_chunks["Unclassified"] = [] |
|
|
|
for chunk in chunks: |
|
theme_found = False |
|
for theme in themes: |
|
if theme.lower() in chunk.lower(): |
|
thematic_chunks[theme].append(chunk) |
|
theme_found = True |
|
break |
|
if not theme_found: |
|
thematic_chunks["Unclassified"].append(chunk) |
|
|
|
print("Chunks per theme:") |
|
for theme, theme_chunks in thematic_chunks.items(): |
|
print(f" {theme}: {len(theme_chunks)}") |
|
|
|
return thematic_chunks |
|
|
|
|
|
|
|
def generate_synthetic_data(thematic_chunks, n_samples=1000): |
|
examples = [] |
|
print(f"Total themes: {len(thematic_chunks)}") |
|
for theme, chunks in thematic_chunks.items(): |
|
print(f"Theme: {theme}, Number of chunks: {len(chunks)}") |
|
if not chunks: |
|
print(f"Warning: No chunks for theme '{theme}'. Skipping this theme.") |
|
continue |
|
samples_per_theme = max(1, n_samples // len(thematic_chunks)) |
|
for _ in range(samples_per_theme): |
|
chunk = random.choice(chunks) |
|
question = f"What does this text say about {theme.lower()}?" |
|
examples.append(InputExample(texts=[question, chunk])) |
|
print(f"Total examples generated: {len(examples)}") |
|
return examples |
|
|
|
|
|
def fine_tune_model(model, train_examples, output_path): |
|
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=16) |
|
train_loss = losses.MultipleNegativesRankingLoss(model) |
|
|
|
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=3, warmup_steps=100, output_path=output_path) |
|
return model |
|
|
|
def main(): |
|
resources_folder = "resources" |
|
themes = [ |
|
"Safe and Effective Systems", |
|
"Algorithmic Discrimination Protections", |
|
"Data Privacy", |
|
"Notice and Explanation", |
|
"Human Alternatives", |
|
"Risk Management", |
|
"Governance", |
|
"Trustworthiness", |
|
"Unclassified" |
|
] |
|
|
|
all_thematic_chunks = {} |
|
|
|
for filename in os.listdir(resources_folder): |
|
if filename.endswith(".pdf"): |
|
pdf_path = os.path.join(resources_folder, filename) |
|
text = extract_text_from_pdf(pdf_path) |
|
thematic_chunks = chunk_text(text, themes) |
|
all_thematic_chunks.update(thematic_chunks) |
|
print(f"Processed {filename}") |
|
|
|
|
|
base_model = "sentence-transformers/all-MiniLM-L6-v2" |
|
model = SentenceTransformer(base_model) |
|
train_examples = generate_synthetic_data(all_thematic_chunks) |
|
fine_tuned_model_path = "fine_tuned_embedding_model" |
|
fine_tune_model(model, train_examples, fine_tuned_model_path) |
|
|
|
print("Fine-tuning completed. Model saved locally.") |
|
|
|
def upload_model_to_hub(): |
|
try: |
|
|
|
fine_tuned_model_path = "fine_tuned_embedding_model" |
|
model = SentenceTransformer(fine_tuned_model_path) |
|
|
|
|
|
repo_id = "svb01/fine-tuned-embedding-model" |
|
|
|
print(f"Uploading model to existing repository: {repo_id}") |
|
|
|
|
|
api = HfApi() |
|
|
|
|
|
for root, _, files in os.walk(fine_tuned_model_path): |
|
for file in files: |
|
file_path = os.path.join(root, file) |
|
api.upload_file( |
|
path_or_fileobj=file_path, |
|
path_in_repo=file, |
|
repo_id=repo_id, |
|
commit_message=f"Upload {file}" |
|
) |
|
|
|
print("Fine-tuned model uploaded to Hugging Face Hub.") |
|
except Exception as e: |
|
print(f"Error uploading model to Hugging Face Hub: {str(e)}") |
|
print("Detailed error information:") |
|
print(traceback.format_exc()) |
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
upload_model_to_hub() |
|
|