File size: 1,165 Bytes
35d7369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import os
from dotenv import load_dotenv
from qdrant_client import QdrantClient
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_qdrant import Qdrant
# Load environment variables
load_dotenv()
# Initialize Qdrant client
qdrant_api_key = os.getenv("QDRANT_API_KEY")
qdrant_client = QdrantClient(
url="https://9266da83-dbfe-48d6-b2d8-cdf101299284.europe-west3-0.gcp.cloud.qdrant.io",
api_key=qdrant_api_key
)
# Initialize OpenAI
openai_api_key = os.getenv("OPENAI_API_KEY")
embeddings = OpenAIEmbeddings(model="text-embedding-3-small", openai_api_key=openai_api_key)
llm = ChatOpenAI(temperature=0, openai_api_key=openai_api_key)
# Initialize vector store
collection_name = "ai_info_collection"
vector_store = Qdrant(
client=qdrant_client,
collection_name=collection_name,
embeddings=embeddings,
)
def generate_answer(query):
docs = vector_store.similarity_search(query, k=3)
context = "\n".join(doc.page_content for doc in docs if doc.page_content)
prompt = f"Based on the following context, answer the question: {query}\n\nContext: {context}"
response = llm.invoke(prompt)
return response.content |