Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,57 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
import json
|
5 |
+
import pandas as pd
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from sentence_transformers import SentenceTransformer
|
10 |
+
import nltk
|
11 |
+
from nltk.tokenize import sent_tokenize
|
12 |
+
import faiss
|
13 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
14 |
+
|
15 |
+
optimus = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
16 |
+
textsplitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
17 |
+
|
18 |
+
dbpath = r''
|
19 |
+
gridpath = r''
|
20 |
+
|
21 |
+
with open(dbpath) as f:
|
22 |
+
papers = [json.loads(line) for line in f]
|
23 |
+
df = pd.DataFrame(papers)
|
24 |
+
reqdf = df[['id', 'title', 'categories', 'abstract']]
|
25 |
+
|
26 |
+
d = 384
|
27 |
+
index = faiss.IndexFlatL2(d)
|
28 |
+
thegird = []#load the grid and index from json file here
|
29 |
+
|
30 |
+
def gen_embeddings(text):
|
31 |
+
sentences = sent_tokenize(text)
|
32 |
+
embeddings = optimus.encode(sentences)
|
33 |
+
return embeddings
|
34 |
+
|
35 |
+
query_list = gen_embeddings(query)
|
36 |
+
if len(query_list) > 1:
|
37 |
+
query_list = torch.mean(query_list, dim=0)
|
38 |
+
query_matrix = np.array(query_list).astype('float32').reshape(-1,1)
|
39 |
+
k = 10
|
40 |
+
distances, indices = index.search(query_matrix, k)
|
41 |
+
result_texts = [thegrid[idx]['text'] for idx in indices[0]]
|
42 |
+
for i, text in enumerate(result_texts):
|
43 |
+
printres = f"Match {i+1}: {text}"
|
44 |
|
45 |
+
searched_topics = []
|
46 |
+
idcache = []
|
47 |
+
for text in result_texts:
|
48 |
+
rowid = text.split("|||")[0]
|
49 |
+
if rowid in idcache:
|
50 |
+
break;
|
51 |
+
else:
|
52 |
+
topic = reqdf.loc[reqdf['id'] === rowid, 'title'].values[0]
|
53 |
+
searched_topics.append(rowid)
|
54 |
+
idcache.append(rowid)
|
55 |
|
56 |
def respond(
|
57 |
message,
|