Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import json | |
import pandas as pd | |
import numpy as np | |
import torch | |
from sentence_transformers import SentenceTransformer | |
import nltk | |
from nltk.tokenize import sent_tokenize | |
import faiss | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
optimus = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
textsplitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) | |
dbpath = r''##push datasets to the hub to use here## | |
gridpath = r'' | |
with open(dbpath) as f: | |
papers = [json.loads(line) for line in f] | |
df = pd.DataFrame(papers) | |
reqdf = df[['id', 'title', 'categories', 'abstract']] | |
d = 384 | |
index = faiss.IndexFlatL2(d) | |
thegird = []#load the grid and index from json file here | |
def gen_embeddings(text): | |
sentences = sent_tokenize(text) | |
embeddings = optimus.encode(sentences) | |
return embeddings | |
query_list = gen_embeddings(query) | |
if len(query_list) > 1: | |
query_list = torch.mean(query_list, dim=0) | |
query_matrix = np.array(query_list).astype('float32').reshape(-1,1) | |
k = 25 | |
distances, indices = index.search(query_matrix, k) | |
result_texts = [thegrid[idx]['text'] for idx in indices[0]] | |
for i, text in enumerate(result_texts): | |
printres = f"Match {i+1}: {text}" | |
searched_topics = [] | |
idcache = [] | |
for text in result_texts: | |
rowid = text.split("|||")[0] | |
if rowid in idcache: | |
break; | |
else: | |
topic = reqdf.loc[reqdf['id'] == rowid, 'title'].values[0] | |
searched_topics.append(rowid) | |
idcache.append(rowid) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |