suwesh commited on
Commit
bb316b0
Β·
verified Β·
1 Parent(s): 06daacc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -6
app.py CHANGED
@@ -13,17 +13,19 @@ pipe = pipeline(
13
  "text-generation",
14
  model=modelpath
15
  )
16
- messages = [
17
- {"role": "system", "content": "You are a customer applying for a housing loan in India. Provide dummy details about your application and negotiate the terms."},
18
- {"role": "user", "content": "Hi!Welcome to Hero Housing Finance!"},
19
- {"role": "assistant", "content": "Hello, I would like to apply for a loan."},
20
- ]
21
  #outputs = pipe(
22
  # messages,
23
  # max_new_tokens=256,
24
  #)
25
  #print(outputs[0]["generated_text"][-1])
26
 
 
 
27
  def respond(
28
  message,
29
  history: list[tuple[str, str]],
@@ -63,7 +65,7 @@ For information on how to customize the ChatInterface, peruse the gradio docs: h
63
  demo = gr.ChatInterface(
64
  respond,
65
  additional_inputs=[
66
- gr.Textbox(value="You are a Roleplaying Customer to a Housing Finance and Loans Company. DONOT say anything that sounds like an AI. Generate text like a natural human would.", label="System message"),
67
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
68
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
69
  gr.Slider(
 
13
  "text-generation",
14
  model=modelpath
15
  )
16
+ #messages = [
17
+ # {"role": "system", "content": "You are a customer applying for a housing loan in India. Provide dummy details about your application and negotiate the terms."},
18
+ # {"role": "user", "content": "Hi!Welcome to Hero Housing Finance!"},
19
+ # {"role": "assistant", "content": "Hello, I would like to apply for a loan."},
20
+ #]
21
  #outputs = pipe(
22
  # messages,
23
  # max_new_tokens=256,
24
  #)
25
  #print(outputs[0]["generated_text"][-1])
26
 
27
+ system_message = "You are a Technical Support Assistant. Read the Context and generate only the summary of the answer to the Query based on your understanding of the <Question> <Answer> pairs in the context."
28
+
29
  def respond(
30
  message,
31
  history: list[tuple[str, str]],
 
65
  demo = gr.ChatInterface(
66
  respond,
67
  additional_inputs=[
68
+ gr.Textbox(value="You are a Technical Support Assistant. Read the Context and generate only the summary of the answer to the Query based on your understanding of the <Question> <Answer> pairs in the context.", label="System message"),
69
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
70
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
71
  gr.Slider(