Spaces:
Sleeping
Sleeping
from huggingface_hub import hf_hub_download | |
import pickle | |
import gradio as gr | |
import numpy as np | |
# Download the model from Hugging Face Hub | |
model_path = hf_hub_download(repo_id="suryadev1/knn", filename="knn_model_pc.pkl") | |
# Load the model | |
with open(model_path, 'rb') as f: | |
knn = pickle.load(f) | |
# Define the prediction function | |
def predict(input_data): | |
# Convert input_data to numpy array | |
input_data = np.array(input_data).reshape(1, -1) | |
# Make predictions | |
predictions = knn.predict([[0.2,0.03,0.0,1.0,0.0]]) | |
return predictions[0] | |
# Create Gradio interface | |
# Adjust the input components based on the number of features your model expects | |
input_components = [gr.inputs.Number(label=f"Feature {i+1}") for i in range(4)] | |
output_component = gr.outputs.Textbox(label="Prediction") | |
iface = gr.Interface( | |
fn=predict, | |
inputs=input_components, | |
outputs=output_component, | |
title="KNN Model Prediction", | |
description="Enter values for each feature to get a prediction." | |
) | |
# Launch the interface | |
iface.launch() | |