Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler | |
| from keras.preprocessing.sequence import pad_sequences | |
| from sklearn.model_selection import train_test_split | |
| from transformers import BertTokenizer, BertConfig | |
| from transformers import AdamW, BertForSequenceClassification, get_linear_schedule_with_warmup | |
| from tqdm import tqdm, trange | |
| import pandas as pd | |
| import io | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from torch.autograd.gradcheck import zero_gradients | |
| import argparse | |
| import random | |
| from utils import * | |
| import os | |
| class ECE(nn.Module): | |
| def __init__(self, n_bins=15): | |
| """ | |
| n_bins (int): number of confidence interval bins | |
| """ | |
| super(ECE, self).__init__() | |
| bin_boundaries = torch.linspace(0, 1, n_bins + 1) | |
| self.bin_lowers = bin_boundaries[:-1] | |
| self.bin_uppers = bin_boundaries[1:] | |
| def forward(self, logits, labels): | |
| softmaxes = F.softmax(logits, dim=1) | |
| confidences, predictions = torch.max(softmaxes, 1) | |
| accuracies = predictions.eq(labels) | |
| ece = torch.zeros(1, device=logits.device) | |
| for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers): | |
| # Calculated |confidence - accuracy| in each bin | |
| in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item()) | |
| prop_in_bin = in_bin.float().mean() | |
| if prop_in_bin.item() > 0: | |
| accuracy_in_bin = accuracies[in_bin].float().mean() | |
| avg_confidence_in_bin = confidences[in_bin].mean() | |
| ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin | |
| return ece | |
| # Function to calculate the accuracy of our predictions vs labels | |
| def accurate_nb(preds, labels): | |
| pred_flat = np.argmax(preds, axis=1).flatten() | |
| labels_flat = labels.flatten() | |
| return np.sum(pred_flat == labels_flat) | |
| def set_seed(args): | |
| random.seed(args.seed) | |
| np.random.seed(args.seed) | |
| torch.manual_seed(args.seed) | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--lr", default=5e-5, type=float, help="The initial learning rate for Adam.") | |
| parser.add_argument("--train_batch_size", default=32, type=int, help="Batch size for training.") | |
| parser.add_argument("--eval_batch_size", default=128, type=int, help="Batch size for training.") | |
| parser.add_argument("--epochs", default=10, type=int, help="Number of epochs for training.") | |
| parser.add_argument("--seed", default=0, type=int, help="Number of epochs for training.") | |
| parser.add_argument("--dataset", default='20news-15', type=str, help="dataset") | |
| parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") | |
| parser.add_argument('--saved_dataset', type=str, default='n', help='whether save the preprocessed pt file of the dataset') | |
| args = parser.parse_args() | |
| print(args) | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| args.device = device | |
| set_seed(args) | |
| ece_criterion = ECE().to(args.device) | |
| # load dataset | |
| if args.saved_dataset == 'n': | |
| train_sentences, val_sentences, test_sentences, train_labels, val_labels, test_labels = load_dataset(args.dataset) | |
| tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) | |
| train_input_ids = [] | |
| val_input_ids = [] | |
| test_input_ids = [] | |
| if args.dataset == '20news' or args.dataset == '20news-15': | |
| MAX_LEN = 150 | |
| else: | |
| MAX_LEN = 256 | |
| for sent in train_sentences: | |
| # `encode` will: | |
| # (1) Tokenize the sentence. | |
| # (2) Prepend the `[CLS]` token to the start. | |
| # (3) Append the `[SEP]` token to the end. | |
| # (4) Map tokens to their IDs. | |
| encoded_sent = tokenizer.encode( | |
| sent, # Sentence to encode. | |
| add_special_tokens = True, # Add '[CLS]' and '[SEP]' | |
| # This function also supports truncation and conversion | |
| # to pytorch tensors, but we need to do padding, so we | |
| # can't use these features :( . | |
| max_length = MAX_LEN, # Truncate all sentences. | |
| #return_tensors = 'pt', # Return pytorch tensors. | |
| ) | |
| # Add the encoded sentence to the list. | |
| train_input_ids.append(encoded_sent) | |
| for sent in val_sentences: | |
| encoded_sent = tokenizer.encode( | |
| sent, | |
| add_special_tokens = True, | |
| max_length = MAX_LEN, | |
| ) | |
| val_input_ids.append(encoded_sent) | |
| for sent in test_sentences: | |
| encoded_sent = tokenizer.encode( | |
| sent, | |
| add_special_tokens = True, | |
| max_length = MAX_LEN, | |
| ) | |
| test_input_ids.append(encoded_sent) | |
| # Pad our input tokens | |
| train_input_ids = pad_sequences(train_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") | |
| val_input_ids = pad_sequences(val_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") | |
| test_input_ids = pad_sequences(test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") | |
| # Create attention masks | |
| train_attention_masks = [] | |
| val_attention_masks = [] | |
| test_attention_masks = [] | |
| # Create a mask of 1s for each token followed by 0s for padding | |
| for seq in train_input_ids: | |
| seq_mask = [float(i>0) for i in seq] | |
| train_attention_masks.append(seq_mask) | |
| for seq in val_input_ids: | |
| seq_mask = [float(i>0) for i in seq] | |
| val_attention_masks.append(seq_mask) | |
| for seq in test_input_ids: | |
| seq_mask = [float(i>0) for i in seq] | |
| test_attention_masks.append(seq_mask) | |
| # Convert all of our data into torch tensors, the required datatype for our model | |
| train_inputs = torch.tensor(train_input_ids) | |
| validation_inputs = torch.tensor(val_input_ids) | |
| train_labels = torch.tensor(train_labels) | |
| validation_labels = torch.tensor(val_labels) | |
| train_masks = torch.tensor(train_attention_masks) | |
| validation_masks = torch.tensor(val_attention_masks) | |
| test_inputs = torch.tensor(test_input_ids) | |
| test_labels = torch.tensor(test_labels) | |
| test_masks = torch.tensor(test_attention_masks) | |
| # Create an iterator of our data with torch DataLoader. | |
| train_data = TensorDataset(train_inputs, train_masks, train_labels) | |
| validation_data = TensorDataset(validation_inputs, validation_masks, validation_labels) | |
| prediction_data = TensorDataset(test_inputs, test_masks, test_labels) | |
| dataset_dir = 'dataset/{}'.format(args.dataset) | |
| if not os.path.exists(dataset_dir): | |
| os.makedirs(dataset_dir) | |
| torch.save(train_data, dataset_dir+'/train.pt') | |
| torch.save(validation_data, dataset_dir+'/val.pt') | |
| torch.save(prediction_data, dataset_dir+'/test.pt') | |
| else: | |
| dataset_dir = 'dataset/{}'.format(args.dataset) | |
| train_data = torch.load(dataset_dir+'/train.pt') | |
| validation_data = torch.load(dataset_dir+'/val.pt') | |
| prediction_data = torch.load(dataset_dir+'/test.pt') | |
| train_sampler = RandomSampler(train_data) | |
| train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) | |
| validation_sampler = SequentialSampler(validation_data) | |
| validation_dataloader = DataLoader(validation_data, sampler=validation_sampler, batch_size=args.eval_batch_size) | |
| prediction_sampler = SequentialSampler(prediction_data) | |
| prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=args.eval_batch_size) | |
| if args.dataset == '20news': | |
| num_labels = 20 | |
| elif args.dataset == '20news-15': | |
| num_labels = 15 | |
| elif args.dataset == 'wos-100': | |
| num_labels = 100 | |
| elif args.dataset == 'wos': | |
| num_labels = 134 | |
| print(num_labels) | |
| model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels= num_labels, output_hidden_states=True) | |
| if torch.cuda.device_count() > 1: | |
| print("Let's use", torch.cuda.device_count(), "GPUs!") | |
| # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs | |
| model = nn.DataParallel(model) | |
| model.to(args.device) | |
| #######train model | |
| param_optimizer = list(model.named_parameters()) | |
| no_decay = ['bias', 'gamma', 'beta'] | |
| optimizer_grouped_parameters = [ | |
| {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], | |
| 'weight_decay_rate': args.weight_decay}, | |
| {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], | |
| 'weight_decay_rate': 0.0} | |
| ] | |
| optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=args.lr, eps=1e-9) | |
| scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.1) | |
| t_total = len(train_dataloader) * args.epochs | |
| # Store our loss and accuracy for plotting | |
| best_val = -np.inf | |
| # trange is a tqdm wrapper around the normal python range | |
| for epoch in trange(args.epochs, desc="Epoch"): | |
| # Training | |
| # Set our model to training mode (as opposed to evaluation mode) | |
| # Tracking variables | |
| tr_loss = 0 | |
| nb_tr_examples, nb_tr_steps = 0, 0 | |
| model.train() | |
| # Train the data for one epoch | |
| for step, batch in enumerate(train_dataloader): | |
| # Add batch to GPU | |
| batch = tuple(t.to(args.device) for t in batch) | |
| # Unpack the inputs from our dataloader | |
| b_input_ids, b_input_mask, b_labels = batch | |
| loss_ce = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)[0] | |
| if torch.cuda.device_count() > 1: | |
| loss_ce = loss_ce.mean() | |
| loss_ce.backward() | |
| torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) | |
| # Update parameters and take a step using the computed gradient | |
| optimizer.step() | |
| # Update tracking variables | |
| tr_loss += loss_ce.item() | |
| nb_tr_examples += b_input_ids.size(0) | |
| nb_tr_steps += 1 | |
| print("Train cross entropy loss: {}".format(tr_loss/nb_tr_steps)) | |
| # Validation | |
| # Put model in evaluation mode to evaluate loss on the validation set | |
| model.eval() | |
| # Tracking variables | |
| eval_accurate_nb = 0 | |
| nb_eval_examples = 0 | |
| logits_list = [] | |
| labels_list = [] | |
| # Evaluate data for one epoch | |
| for batch in validation_dataloader: | |
| # Add batch to GPU | |
| batch = tuple(t.to(args.device) for t in batch) | |
| # Unpack the inputs from our dataloader | |
| b_input_ids, b_input_mask, b_labels = batch | |
| # Telling the model not to compute or store gradients, saving memory and speeding up validation | |
| with torch.no_grad(): | |
| # Forward pass, calculate logit predictions | |
| logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] | |
| logits_list.append(logits) | |
| labels_list.append(b_labels) | |
| # Move logits and labels to CPU | |
| logits = logits.detach().cpu().numpy() | |
| label_ids = b_labels.to('cpu').numpy() | |
| tmp_eval_nb = accurate_nb(logits, label_ids) | |
| eval_accurate_nb += tmp_eval_nb | |
| nb_eval_examples += label_ids.shape[0] | |
| eval_accuracy = eval_accurate_nb/nb_eval_examples | |
| print("Validation Accuracy: {}".format(eval_accuracy)) | |
| scheduler.step(eval_accuracy) | |
| logits_ece = torch.cat(logits_list) | |
| labels_ece = torch.cat(labels_list) | |
| ece = ece_criterion(logits_ece, labels_ece).item() | |
| print('ECE on val data: {}'.format(ece)) | |
| if eval_accuracy > best_val: | |
| dirname = '{}/BERT-base-{}'.format(args.dataset, args.seed) | |
| output_dir = './model_save/{}'.format(dirname) | |
| if not os.path.exists(output_dir): | |
| os.makedirs(output_dir) | |
| print("Saving model to %s" % output_dir) | |
| model_to_save = model.module if hasattr(model, 'module') else model | |
| model_to_save.save_pretrained(output_dir) | |
| #tokenizer.save_pretrained(output_dir) | |
| best_val = eval_accuracy | |
| # ##### test model on test data | |
| # Put model in evaluation mode | |
| model.eval() | |
| # Tracking variables | |
| eval_accurate_nb = 0 | |
| nb_test_examples = 0 | |
| logits_list = [] | |
| labels_list = [] | |
| # Predict | |
| for batch in prediction_dataloader: | |
| # Add batch to GPU | |
| batch = tuple(t.to(args.device) for t in batch) | |
| # Unpack the inputs from our dataloader | |
| b_input_ids, b_input_mask, b_labels = batch | |
| # Telling the model not to compute or store gradients, saving memory and speeding up prediction | |
| with torch.no_grad(): | |
| # Forward pass, calculate logit predictions | |
| logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] | |
| logits_list.append(logits) | |
| labels_list.append(b_labels) | |
| # Move logits and labels to CPU | |
| logits = logits.detach().cpu().numpy() | |
| label_ids = b_labels.to('cpu').numpy() | |
| tmp_eval_nb = accurate_nb(logits, label_ids) | |
| eval_accurate_nb += tmp_eval_nb | |
| nb_test_examples += label_ids.shape[0] | |
| print("Test Accuracy: {}".format(eval_accurate_nb/nb_test_examples)) | |
| logits_ece = torch.cat(logits_list) | |
| labels_ece = torch.cat(labels_list) | |
| ece = ece_criterion(logits_ece, labels_ece).item() | |
| print('ECE on test data: {}'.format(ece)) | |
| if __name__ == "__main__": | |
| main() |