Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
import pickle | |
from gradio import Progress | |
import numpy as np | |
import subprocess | |
import shutil | |
import matplotlib.pyplot as plt | |
from sklearn.metrics import roc_curve, auc | |
import pandas as pd | |
from sklearn.metrics import roc_auc_score | |
from matplotlib.figure import Figure | |
# Define the function to process the input file and model selection | |
def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)): | |
# progress = gr.Progress(track_tqdm=True) | |
progress(0, desc="Starting the processing") | |
# with open(file.name, 'r') as f: | |
# content = f.read() | |
# saved_test_dataset = "train.txt" | |
# saved_test_label = "train_label.txt" | |
# saved_train_info="train_info.txt" | |
# Save the uploaded file content to a specified location | |
# shutil.copyfile(file.name, saved_test_dataset) | |
# shutil.copyfile(label.name, saved_test_label) | |
# shutil.copyfile(info.name, saved_train_info) | |
parent_location="ratio_proportion_change3_2223/sch_largest_100-coded/finetuning/" | |
test_info_location=parent_location+"fullTest/test_info.txt" | |
test_location=parent_location+"fullTest/test.txt" | |
if(model_name=="ASTRA-FT-HGR"): | |
finetune_task="highGRschool10" | |
# test_info_location=parent_location+"fullTest/test_info.txt" | |
# test_location=parent_location+"fullTest/test.txt" | |
elif(model_name== "ASTRA-FT-LGR" ): | |
finetune_task="lowGRschoolAll" | |
# test_info_location=parent_location+"lowGRschoolAll/test_info.txt" | |
# test_location=parent_location+"lowGRschoolAll/test.txt" | |
elif(model_name=="ASTRA-FT-FULL"): | |
# test_info_location=parent_location+"fullTest/test_info.txt" | |
# test_location=parent_location+"fullTest/test.txt" | |
finetune_task="fullTest" | |
else: | |
finetune_task=None | |
# Load the test_info file and the graduation rate file | |
test_info = pd.read_csv(test_info_location, sep=',', header=None, engine='python') | |
grad_rate_data = pd.DataFrame(pd.read_pickle('school_grduation_rate.pkl'),columns=['school_number','grad_rate']) # Load the grad_rate data | |
# Step 1: Extract unique school numbers from test_info | |
unique_schools = test_info[0].unique() | |
# Step 2: Filter the grad_rate_data using the unique school numbers | |
schools = grad_rate_data[grad_rate_data['school_number'].isin(unique_schools)] | |
# Define a threshold for high and low graduation rates (adjust as needed) | |
grad_rate_threshold = 0.9 | |
# Step 4: Divide schools into high and low graduation rate groups | |
high_grad_schools = schools[schools['grad_rate'] >= grad_rate_threshold]['school_number'].unique() | |
low_grad_schools = schools[schools['grad_rate'] < grad_rate_threshold]['school_number'].unique() | |
# Step 5: Sample percentage of schools from each group | |
high_sample = pd.Series(high_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist() | |
low_sample = pd.Series(low_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist() | |
# Step 6: Combine the sampled schools | |
random_schools = high_sample + low_sample | |
# Step 7: Get indices for the sampled schools | |
indices = test_info[test_info[0].isin(random_schools)].index.tolist() | |
high_indices = test_info[(test_info[0].isin(high_sample))].index.tolist() | |
low_indices = test_info[(test_info[0].isin(low_sample))].index.tolist() | |
# Load the test file and select rows based on indices | |
test = pd.read_csv(test_location, sep=',', header=None, engine='python') | |
selected_rows_df2 = test.loc[indices] | |
# Save the selected rows to a file | |
selected_rows_df2.to_csv('selected_rows.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ') | |
graduation_groups = [ | |
'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index | |
] | |
# Group data by opt_task1 and opt_task2 based on test_info[6] | |
opt_task_groups = ['opt_task1' if test_info.loc[idx, 6] == 0 else 'opt_task2' for idx in selected_rows_df2.index] | |
with open("roc_data2.pkl", 'rb') as file: | |
data = pickle.load(file) | |
t_label=data[0] | |
p_label=data[1] | |
# Step 1: Align graduation_group, t_label, and p_label | |
aligned_labels = list(zip(graduation_groups, t_label, p_label)) | |
opt_task_aligned = list(zip(opt_task_groups, t_label, p_label)) | |
# Step 2: Separate the labels for high and low groups | |
high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high'] | |
low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low'] | |
high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high'] | |
low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low'] | |
opt_task1_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task1'] | |
opt_task1_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task1'] | |
opt_task2_t_labels = [t for task, t, p in opt_task_aligned if task == 'opt_task2'] | |
opt_task2_p_labels = [p for task, t, p in opt_task_aligned if task == 'opt_task2'] | |
high_roc_auc = roc_auc_score(high_t_labels, high_p_labels) if len(set(high_t_labels)) > 1 else None | |
low_roc_auc = roc_auc_score(low_t_labels, low_p_labels) if len(set(low_t_labels)) > 1 else None | |
opt_task1_roc_auc = roc_auc_score(opt_task1_t_labels, opt_task1_p_labels) if len(set(opt_task1_t_labels)) > 1 else None | |
opt_task2_roc_auc = roc_auc_score(opt_task2_t_labels, opt_task2_p_labels) if len(set(opt_task2_t_labels)) > 1 else None | |
# For demonstration purposes, we'll just return the content with the selected model name | |
# print(checkpoint) | |
progress(0.1, desc="Files created and saved") | |
# if (inc_val<5): | |
# model_name="highGRschool10" | |
# elif(inc_val>=5 & inc_val<10): | |
# model_name="highGRschool10" | |
# else: | |
# model_name="highGRschool10" | |
# Function to analyze each row | |
def analyze_row(row): | |
# Split the row into fields | |
fields = row.split("\t") | |
# Define tasks for OptionalTask_1, OptionalTask_2, and FinalAnswer | |
optional_task_1_subtasks = ["DenominatorFactor", "NumeratorFactor", "EquationAnswer"] | |
optional_task_2_subtasks = [ | |
"FirstRow2:1", "FirstRow2:2", "FirstRow1:1", "FirstRow1:2", | |
"SecondRow", "ThirdRow" | |
] | |
# Helper function to evaluate task attempts | |
def evaluate_tasks(fields, tasks): | |
task_status = {} | |
for task in tasks: | |
relevant_attempts = [f for f in fields if task in f] | |
if any("OK" in attempt for attempt in relevant_attempts): | |
task_status[task] = "Attempted (Successful)" | |
elif any("ERROR" in attempt for attempt in relevant_attempts): | |
task_status[task] = "Attempted (Error)" | |
elif any("JIT" in attempt for attempt in relevant_attempts): | |
task_status[task] = "Attempted (JIT)" | |
else: | |
task_status[task] = "Unattempted" | |
return task_status | |
# Evaluate tasks for each category | |
optional_task_1_status = evaluate_tasks(fields, optional_task_1_subtasks) | |
optional_task_2_status = evaluate_tasks(fields, optional_task_2_subtasks) | |
# Check if tasks have any successful attempt | |
opt1_done = any(status == "Attempted (Successful)" for status in optional_task_1_status.values()) | |
opt2_done = any(status == "Attempted (Successful)" for status in optional_task_2_status.values()) | |
return opt1_done, opt2_done | |
# Read data from test_info.txt | |
# Read data from test_info.txt | |
with open(test_info_location, "r") as file: | |
data = file.readlines() | |
# Assuming test_info[7] is a list with ideal tasks for each instance | |
ideal_tasks = test_info[6] # A list where each element is either 1 or 2 | |
# Initialize counters | |
task_counts = { | |
1: {"only_opt1": 0, "only_opt2": 0, "both": 0,"none":0}, | |
2: {"only_opt1": 0, "only_opt2": 0, "both": 0,"none":0} | |
} | |
# Analyze rows | |
for i, row in enumerate(data): | |
row = row.strip() | |
if not row: | |
continue | |
ideal_task = ideal_tasks[i] # Get the ideal task for the current row | |
opt1_done, opt2_done = analyze_row(row) | |
if ideal_task == 0: | |
if opt1_done and not opt2_done: | |
task_counts[1]["only_opt1"] += 1 | |
elif not opt1_done and opt2_done: | |
task_counts[1]["only_opt2"] += 1 | |
elif opt1_done and opt2_done: | |
task_counts[1]["both"] += 1 | |
else: | |
task_counts[1]["none"] +=1 | |
elif ideal_task == 1: | |
if opt1_done and not opt2_done: | |
task_counts[2]["only_opt1"] += 1 | |
elif not opt1_done and opt2_done: | |
task_counts[2]["only_opt2"] += 1 | |
elif opt1_done and opt2_done: | |
task_counts[2]["both"] += 1 | |
else: | |
task_counts[2]["none"] +=1 | |
# Create a string output for results | |
# output_summary = "Task Analysis Summary:\n" | |
# output_summary += "-----------------------\n" | |
# for ideal_task, counts in task_counts.items(): | |
# output_summary += f"Ideal Task = OptionalTask_{ideal_task}:\n" | |
# output_summary += f" Only OptionalTask_1 done: {counts['only_opt1']}\n" | |
# output_summary += f" Only OptionalTask_2 done: {counts['only_opt2']}\n" | |
# output_summary += f" Both done: {counts['both']}\n" | |
# Generate pie chart for Task 1 | |
task1_labels = list(task_counts[1].keys()) | |
task1_values = list(task_counts[1].values()) | |
fig_task1 = Figure() | |
ax1 = fig_task1.add_subplot(1, 1, 1) | |
ax1.pie(task1_values, labels=task1_labels, autopct='%1.1f%%', startangle=90) | |
ax1.set_title('Ideal Task 1 Distribution') | |
# Generate pie chart for Task 2 | |
task2_labels = list(task_counts[2].keys()) | |
task2_values = list(task_counts[2].values()) | |
fig_task2 = Figure() | |
ax2 = fig_task2.add_subplot(1, 1, 1) | |
ax2.pie(task2_values, labels=task2_labels, autopct='%1.1f%%', startangle=90) | |
ax2.set_title('Ideal Task 2 Distribution') | |
# print(output_summary) | |
progress(0.2, desc="analysis done!! Executing models") | |
print("finetuned task: ",finetune_task) | |
# subprocess.run([ | |
# "python", "new_test_saved_finetuned_model.py", | |
# "-workspace_name", "ratio_proportion_change3_2223/sch_largest_100-coded", | |
# "-finetune_task", finetune_task, | |
# "-test_dataset_path","../../../../selected_rows.txt", | |
# # "-test_label_path","../../../../train_label.txt", | |
# "-finetuned_bert_classifier_checkpoint", | |
# "ratio_proportion_change3_2223/sch_largest_100-coded/output/highGRschool10/bert_fine_tuned.model.ep42", | |
# "-e",str(1), | |
# "-b",str(1000) | |
# ]) | |
progress(0.6,desc="Model execution completed") | |
result = {} | |
with open("result.txt", 'r') as file: | |
for line in file: | |
key, value = line.strip().split(': ', 1) | |
# print(type(key)) | |
if key=='epoch': | |
result[key]=value | |
else: | |
result[key]=float(value) | |
result["ROC score of HGR"]=high_roc_auc | |
result["ROC score of LGR"]=low_roc_auc | |
# Create a plot | |
with open("roc_data.pkl", "rb") as f: | |
fpr, tpr, _ = pickle.load(f) | |
# print(fpr,tpr) | |
roc_auc = auc(fpr, tpr) | |
# Create a matplotlib figure | |
fig = Figure() | |
ax = fig.add_subplot(1, 1, 1) | |
ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})') | |
ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') | |
ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'Receiver Operating Curve (ROC)') | |
ax.legend(loc="lower right") | |
ax.grid() | |
# Save plot to a file | |
plot_path = "plot.png" | |
fig.savefig(plot_path) | |
plt.close(fig) | |
progress(1.0) | |
# Prepare text output | |
text_output = f"Model: {model_name}\nResult:\n{result}" | |
# Prepare text output with HTML formatting | |
text_output = f""" | |
Model: {model_name}\n | |
-----------------\n | |
Time Taken: {result['time_taken_from_start']:.2f} seconds\n | |
Total Schools in test: {len(unique_schools):.4f}\n | |
Total number of instances having Schools with HGR : {len(high_sample):.4f}\n | |
Total number of instances having Schools with LGR: {len(low_sample):.4f}\n | |
ROC score of HGR: {high_roc_auc}\n | |
ROC score of LGR: {low_roc_auc}\n | |
ROC score of opt1: {opt_task1_roc_auc}\n | |
ROC score of opt2: {opt_task2_roc_auc}\n | |
-----------------\n | |
""" | |
return text_output,fig,fig_task1,fig_task2 | |
# List of models for the dropdown menu | |
# models = ["ASTRA-FT-HGR", "ASTRA-FT-LGR", "ASTRA-FT-FULL"] | |
models = ["ASTRA-FT-HGR", "ASTRA-FT-FULL"] | |
content = """ | |
<h1 style="color: white;">ASTRA: An AI Model for Analyzing Math Strategies</h1> | |
<h3 style="color: white;"> | |
<a href="https://drive.google.com/file/d/1lbEpg8Se1ugTtkjreD8eXIg7qrplhWan/view" style="color: #1E90FF; text-decoration: none;">Link To Paper</a> | | |
<a href="https://github.com/Syudu41/ASTRA---Gates-Project" style="color: #1E90FF; text-decoration: none;">GitHub</a> | | |
<a href="#" style="color: #1E90FF; text-decoration: none;">Project Page</a> | |
</h3> | |
<p style="color: white;">Welcome to a demo of ASTRA. ASTRA is a collaborative research project between researchers at the | |
<a href="https://www.memphis.edu" style="color: #1E90FF; text-decoration: none;">University of Memphis</a> and | |
<a href="https://www.carnegielearning.com" style="color: #1E90FF; text-decoration: none;">Carnegie Learning</a> | |
to utilize AI to improve our understanding of math learning strategies.</p> | |
<p style="color: white;">This demo has been developed with a pre-trained model (based on an architecture similar to BERT) | |
that learns math strategies using data collected from hundreds of schools in the U.S. who have used | |
Carnegie Learning's MATHia (formerly known as Cognitive Tutor), the flagship Intelligent Tutor | |
that is part of a core, blended math curriculum.</p> | |
<p style="color: white;">For this demo, we have used data from a specific domain (teaching ratio and proportions) within | |
7th grade math. The fine-tuning based on the pre-trained models learns to predict which strategies | |
lead to correct vs. incorrect solutions.</p> | |
<p style="color: white;">To use the demo, please follow these steps:</p> | |
<ol style="color: white;"> | |
<li style="color: white;">Select a fine-tuned model: | |
<ul style="color: white;"> | |
<li style="color: white;">ASTRA-FT-HGR: Fine-tuned with a small sample of data from schools that have a high graduation rate.</li> | |
<li style="color: white;">ASTRA-FT-Full: Fine-tuned with a small sample of data from a mix of schools that have high/low graduation rates.</li> | |
</ul> | |
</li> | |
<li style="color: white;">Select a percentage of schools to analyze (selecting a large percentage may take a long time).</li> | |
<li style="color: white;">View Results: | |
<ul> | |
<li style="color: white;">The results from the fine-tuned model are displayed on the dashboard.</li> | |
<li style="color: white;">The results are shown separately for schools that have high and low graduation rates.</li> | |
</ul> | |
</li> | |
</ol> | |
""" | |
# CSS styling for white text | |
# Create the Gradio interface | |
with gr.Blocks(css=""" | |
body { | |
background-color: #1e1e1e!important; | |
font-family: 'Arial', sans-serif; | |
color: #f5f5f5!important;; | |
} | |
.gradio-container { | |
max-width: 850px!important; | |
margin: 0 auto!important;; | |
padding: 20px!important;; | |
background-color: #292929!important; | |
border-radius: 10px; | |
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.2); | |
} | |
.gradio-container-4-44-0 .prose h1 { | |
font-size: var(--text-xxl); | |
color: #ffffff!important; | |
} | |
#title { | |
color: white!important; | |
font-size: 2.3em; | |
font-weight: bold; | |
text-align: center!important; | |
margin-bottom: 20px; | |
} | |
.description { | |
text-align: center; | |
font-size: 1.1em; | |
color: #bfbfbf; | |
margin-bottom: 30px; | |
} | |
.file-box { | |
max-width: 180px; | |
padding: 5px; | |
background-color: #444!important; | |
border: 1px solid #666!important; | |
border-radius: 6px; | |
height: 80px!important;; | |
margin: 0 auto!important;; | |
text-align: center; | |
color: transparent; | |
} | |
.file-box span { | |
color: #f5f5f5!important; | |
font-size: 1em; | |
line-height: 45px; /* Vertically center text */ | |
} | |
.dropdown-menu { | |
max-width: 220px; | |
margin: 0 auto!important; | |
background-color: #444!important; | |
color:#444!important; | |
border-radius: 6px; | |
padding: 8px; | |
font-size: 1.1em; | |
border: 1px solid #666; | |
} | |
.button { | |
background-color: #4CAF50!important; | |
color: white!important; | |
font-size: 1.1em; | |
padding: 10px 25px; | |
border-radius: 6px; | |
cursor: pointer; | |
transition: background-color 0.2s ease-in-out; | |
} | |
.button:hover { | |
background-color: #45a049!important; | |
} | |
.output-text { | |
background-color: #333!important; | |
padding: 12px; | |
border-radius: 8px; | |
border: 1px solid #666; | |
font-size: 1.1em; | |
} | |
.footer { | |
text-align: center; | |
margin-top: 50px; | |
font-size: 0.9em; | |
color: #b0b0b0; | |
} | |
.svelte-12ioyct .wrap { | |
display: none !important; | |
} | |
.file-label-text { | |
display: none !important; | |
} | |
div.svelte-sfqy0y { | |
display: flex; | |
flex-direction: inherit; | |
flex-wrap: wrap; | |
gap: var(--form-gap-width); | |
box-shadow: var(--block-shadow); | |
border: var(--block-border-width) solid var(--border-color-primary); | |
border-radius: var(--block-radius); | |
background: #1f2937!important; | |
overflow-y: hidden; | |
} | |
.block.svelte-12cmxck { | |
position: relative; | |
margin: 0; | |
box-shadow: var(--block-shadow); | |
border-width: var(--block-border-width); | |
border-color: var(--block-border-color); | |
border-radius: var(--block-radius); | |
background: #1f2937!important; | |
width: 100%; | |
line-height: var(--line-sm); | |
} | |
.svelte-12ioyct .wrap { | |
display: none !important; | |
} | |
.file-label-text { | |
display: none !important; | |
} | |
input[aria-label="file upload"] { | |
display: none !important; | |
} | |
gradio-app .gradio-container.gradio-container-4-44-0 .contain .file-box span { | |
font-size: 1em; | |
line-height: 45px; | |
color: #1f2937 !important; | |
} | |
.wrap.svelte-12ioyct { | |
display: flex; | |
flex-direction: column; | |
justify-content: center; | |
align-items: center; | |
min-height: var(--size-60); | |
color: #1f2937 !important; | |
line-height: var(--line-md); | |
height: 100%; | |
padding-top: var(--size-3); | |
text-align: center; | |
margin: auto var(--spacing-lg); | |
} | |
span.svelte-1gfkn6j:not(.has-info) { | |
margin-bottom: var(--spacing-lg); | |
color: white!important; | |
} | |
label.float.svelte-1b6s6s { | |
position: relative!important; | |
top: var(--block-label-margin); | |
left: var(--block-label-margin); | |
} | |
label.svelte-1b6s6s { | |
display: inline-flex; | |
align-items: center; | |
z-index: var(--layer-2); | |
box-shadow: var(--block-label-shadow); | |
border: var(--block-label-border-width) solid var(--border-color-primary); | |
border-top: none; | |
border-left: none; | |
border-radius: var(--block-label-radius); | |
background: rgb(120 151 180)!important; | |
padding: var(--block-label-padding); | |
pointer-events: none; | |
color: #1f2937!important; | |
font-weight: var(--block-label-text-weight); | |
font-size: var(--block-label-text-size); | |
line-height: var(--line-sm); | |
} | |
.file.svelte-18wv37q.svelte-18wv37q { | |
display: block!important; | |
width: var(--size-full); | |
} | |
tbody.svelte-18wv37q>tr.svelte-18wv37q:nth-child(odd) { | |
background: ##7897b4!important; | |
color: white; | |
background: #aca7b2; | |
} | |
.gradio-container-4-31-4 .prose h1, .gradio-container-4-31-4 .prose h2, .gradio-container-4-31-4 .prose h3, .gradio-container-4-31-4 .prose h4, .gradio-container-4-31-4 .prose h5 { | |
color: white; | |
} | |
""") as demo: | |
gr.Markdown("<h1 id='title'>ASTRA</h1>", elem_id="title") | |
gr.Markdown(content) | |
with gr.Row(): | |
# file_input = gr.File(label="Upload a test file", file_types=['.txt'], elem_classes="file-box") | |
# label_input = gr.File(label="Upload test labels", file_types=['.txt'], elem_classes="file-box") | |
# info_input = gr.File(label="Upload test info", file_types=['.txt'], elem_classes="file-box") | |
model_dropdown = gr.Dropdown(choices=models, label="Select Fine-tuned Model", elem_classes="dropdown-menu") | |
increment_slider = gr.Slider(minimum=1, maximum=100, step=1, label="Schools Percentage", value=1) | |
gr.Markdown("<p class='description'>Dashboard</p>") | |
with gr.Row(): | |
output_text = gr.Textbox(label="") | |
# output_image = gr.Image(label="ROC") | |
plot_output = gr.Plot(label="roc") | |
with gr.Row(): | |
opt1_pie = gr.Plot(label="opt1") | |
opt2_pie = gr.Plot(label="opt2") | |
# output_summary = gr.Textbox(label="Summary") | |
btn = gr.Button("Submit") | |
btn.click(fn=process_file, inputs=[model_dropdown,increment_slider], outputs=[output_text,plot_output,opt1_pie,opt2_pie]) | |
# Launch the app | |
demo.launch() |