File size: 19,705 Bytes
6a34fd4
 
 
 
 
 
5c72fe4
 
 
 
6a34fd4
 
 
 
 
 
5c72fe4
6a34fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
 
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
 
 
 
 
5c72fe4
6a34fd4
 
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
 
 
 
5c72fe4
 
 
 
 
6a34fd4
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
 
 
 
 
 
5c72fe4
6a34fd4
 
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import torch
from torch.utils.data import Dataset
import pandas as pd
import numpy as np
import tqdm
import random
from .vocab import Vocab
import pickle
import copy
# from sklearn.preprocessing import OneHotEncoder

class PretrainerDataset(Dataset):
    """
        Class name: PretrainDataset
        
    """
    def __init__(self, dataset_path, vocab, seq_len=30, max_mask=0.15):
        self.dataset_path = dataset_path
        self.vocab = vocab # Vocab object
        
        # Related to input dataset file
        self.lines = []
        self.index_documents = {}

        seq_len_list = []
        with open(self.dataset_path, "r") as reader:
            i = 0
            index = 0
            self.index_documents[i] = []
            for line in tqdm.tqdm(reader.readlines()):
                if line:
                    line = line.strip()
                    if not line:
                        i+=1
                        self.index_documents[i] = []
                    else:
                        self.index_documents[i].append(index)
                        self.lines.append(line.split("\t"))
                        len_line = len(line.split("\t"))
                        seq_len_list.append(len_line)
                        index+=1
            reader.close()
        print("Sequence Stats: len: %s, min: %s, max: %s, average: %s"% (len(seq_len_list),
              min(seq_len_list), max(seq_len_list), sum(seq_len_list)/len(seq_len_list)))
        print("Unique Sequences: ", len({tuple(ll) for ll in self.lines}))
        self.index_documents = {k:v for k,v in self.index_documents.items() if v}
        print(len(self.index_documents))
        self.seq_len = seq_len
        print("Sequence length set at: ", self.seq_len)
        self.max_mask = max_mask
        print("% of input tokens selected for masking : ",self.max_mask)

    
    def __len__(self):
        return len(self.lines)
    
    def __getitem__(self, item):
        token_a = self.lines[item]
        # sa_masked = None
        # sa_masked_label = None
        # token_b = None
        # is_same_student = None
        # sb_masked = None
        # sb_masked_label = None
        
        # if self.select_next_seq:
        #     is_same_student, token_b = self.get_token_b(item)
        #     is_same_student = 1 if is_same_student else 0
        #     token_a1, token_b1 = self.truncate_to_max_seq(token_a, token_b)
        #     sa_masked, sa_masked_label = self.random_mask_seq(token_a1)
        #     sb_masked, sb_masked_label = self.random_mask_seq(token_b1)
        # else:
        token_a = token_a[:self.seq_len-2]
        sa_masked, sa_masked_label, sa_masked_pos = self.random_mask_seq(token_a)

        s1 = ([self.vocab.vocab['[CLS]']] + sa_masked + [self.vocab.vocab['[SEP]']])
        s1_label = ([self.vocab.vocab['[PAD]']] + sa_masked_label + [self.vocab.vocab['[PAD]']])
        segment_label = [1 for _ in range(len(s1))]
        masked_pos = ([0] + sa_masked_pos + [0])
        
        # if self.select_next_seq:
        #     s1 = s1 + sb_masked + [self.vocab.vocab['[SEP]']]
        #     s1_label = s1_label + sb_masked_label + [self.vocab.vocab['[PAD]']]
        #     segment_label = segment_label + [2 for _ in range(len(sb_masked)+1)]
        
        padding = [self.vocab.vocab['[PAD]'] for _ in range(self.seq_len - len(s1))]
        s1.extend(padding)
        s1_label.extend(padding)
        segment_label.extend(padding)
        masked_pos.extend(padding)
 
        output = {'bert_input': s1,
                 'bert_label': s1_label,
                 'segment_label': segment_label,
                 'masked_pos': masked_pos}
        # print(f"tokenA: {token_a}")
        # print(f"output: {output}")
        
        # if self.select_next_seq:
        #     output['is_same_student'] = is_same_student
        
        # print(item, len(s1), len(s1_label), len(segment_label))
        # print(f"{item}.")
        return {key: torch.tensor(value) for key, value in output.items()}
    
    def random_mask_seq(self, tokens):
        """
        Input: original token seq
        Output: masked token seq, output label
        """
        
        masked_pos = []
        output_labels = []
        output_tokens = copy.deepcopy(tokens)
        opt_step = False
        for i, token in enumerate(tokens):
            if token in ['OptionalTask_1', 'EquationAnswer', 'NumeratorFactor', 'DenominatorFactor', 'OptionalTask_2', 'FirstRow1:1', 'FirstRow1:2', 'FirstRow2:1', 'FirstRow2:2', 'SecondRow', 'ThirdRow']:
                opt_step = True
            # if opt_step:
            #     prob = random.random()
            #     if prob < self.max_mask:
            #         output_tokens[i] = random.choice([3,7,8,9,11,12,13,14,15,16,22,23,24,25,26,27,30,31,32])
            #         masked_pos.append(1)
            #     else:
            #         output_tokens[i] = self.vocab.vocab.get(token, self.vocab.vocab['[UNK]'])
            #         masked_pos.append(0)
            #     output_labels.append(self.vocab.vocab.get(token, self.vocab.vocab['[UNK]']))
            #     opt_step = False
            # else:    
            prob = random.random()
            if prob < self.max_mask:
             # chooses 15% of token positions at random
                # prob /= 0.15
                prob = random.random()
                if prob < 0.8: #[MASK] token 80% of the time
                    output_tokens[i] = self.vocab.vocab['[MASK]']
                    masked_pos.append(1)
                elif prob < 0.9: # a random token 10% of the time 
                    # print(".......0.8-0.9......")
                    if opt_step:
                        output_tokens[i] = random.choice([7,8,9,11,12,13,14,15,16,22,23,24,25,26,27,30,31,32])
                        opt_step = False
                    else:
                        output_tokens[i] = random.randint(1, len(self.vocab.vocab)-1)
                    masked_pos.append(1)
                else: # the unchanged i-th token 10% of the time
                    # print(".......unchanged......")
                    output_tokens[i] = self.vocab.vocab.get(token, self.vocab.vocab['[UNK]'])
                    masked_pos.append(0)
                # True Label
                output_labels.append(self.vocab.vocab.get(token, self.vocab.vocab['[UNK]']))
                # masked_pos_label[i] = self.vocab.vocab.get(token, self.vocab.vocab['[UNK]'])
            else:
                # i-th token with original value
                output_tokens[i] = self.vocab.vocab.get(token, self.vocab.vocab['[UNK]'])
                # Padded label
                output_labels.append(self.vocab.vocab['[PAD]'])
                masked_pos.append(0)
        # label_position = []
        # label_tokens = []
        # for k, v in masked_pos_label.items():
        #     label_position.append(k)
        #     label_tokens.append(v)
        return  output_tokens, output_labels, masked_pos
    
#     def get_token_b(self, item):
#         document_id = [k for k,v in self.index_documents.items() if item in v][0]
#         random_document_id = document_id
        
#         if random.random() < 0.5:
#             document_ids = [k for k in self.index_documents.keys() if k != document_id]
#             random_document_id = random.choice(document_ids) 

#         same_student = (random_document_id == document_id)
        
#         nex_seq_list = self.index_documents.get(random_document_id)

#         if same_student:
#             if len(nex_seq_list) != 1:
#                 nex_seq_list = [v for v in nex_seq_list if v !=item]

#         next_seq = random.choice(nex_seq_list)
#         tokens = self.lines[next_seq]
#         # print(f"item = {item}, tokens: {tokens}")
#         # print(f"item={item}, next={next_seq}, same_student = {same_student}, {document_id} == {random_document_id}, b. {tokens}")
#         return same_student, tokens

#     def truncate_to_max_seq(self, s1, s2):
#         sa = copy.deepcopy(s1)
#         sb = copy.deepcopy(s1)
#         total_allowed_seq = self.seq_len - 3
        
#         while((len(sa)+len(sb)) > total_allowed_seq):
#             if random.random() < 0.5:
#                 sa.pop()
#             else:
#                 sb.pop()
#         return sa, sb
            
                
class TokenizerDataset(Dataset):
    """
        Class name: TokenizerDataset
        Tokenize the data in the dataset
        
    """
    def __init__(self, dataset_path, label_path, vocab, seq_len=30):
        self.dataset_path = dataset_path
        self.label_path = label_path
        self.vocab = vocab # Vocab object
        # self.encoder = OneHotEncoder(sparse=False)
        
        # Related to input dataset file
        self.lines = []
        self.labels = []
        self.feats = []
        if self.label_path:
            self.label_file = open(self.label_path, "r")
            for line in self.label_file:
                if line:
                    line = line.strip()
                    if not line:
                        continue
                    self.labels.append(int(line))
            self.label_file.close()
            
            # Comment this section if you are not using feat attribute
            try:
                j = 0
                dataset_info_file = open(self.label_path.replace("label", "info"), "r")
                for line in dataset_info_file:
                    if line:
                        line = line.strip()
                        if not line:
                            continue
                      
                        # # highGRschool_w_prior
                        # feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
                        
                        # highGRschool_w_prior_w_diffskill_wo_fa
                        feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
                        feat2 = [float(i) for i in line.split(",")[-2].split("\t")]
                        feat_vec.extend(feat2[1:])
                        
                        # # highGRschool_w_prior_w_p_diffskill_wo_fa
                        # feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
                        # feat2 = [-float(i) for i in line.split(",")[-2].split("\t")]
                        # feat_vec.extend(feat2[1:])
                        
#                         # highGRschool_w_prior_w_diffskill_0fa_skill
#                         feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
#                         feat2 = [float(i) for i in line.split(",")[-2].split("\t")]
#                         fa_feat_vec = [float(i) for i in line.split(",")[-1].split("\t")]
                        
#                         diff_skill = [f2 if f1==0 else 0 for f2, f1 in zip(feat2, fa_feat_vec)]
#                         feat_vec.extend(diff_skill)
                         
                        if j == 0:
                            print(len(feat_vec))
                            j+=1
                        
                        # feat_vec.extend(feat2[1:])
                        # feat_vec.extend(feat2)
                        # feat_vec = [float(i) for i in line.split(",")[-2].split("\t")]
                        # feat_vec = feat_vec[1:]
                        # feat_vec = [float(line.split(",")[-1])]
                        # feat_vec = [float(i) for i in line.split(",")[-1].split("\t")]
                        # feat_vec = [ft-f1 for ft, f1 in zip(feat_vec, fa_feat_vec)]

                        self.feats.append(feat_vec)
                dataset_info_file.close()
            except Exception as e:
                print(e)
            # labeler = np.array([0, 1]) #np.unique(self.labels)
            # print(f"Labeler {labeler}")
            # self.encoder.fit(labeler.reshape(-1,1))
            # self.labels = self.encoder.transform(np.array(self.labels).reshape(-1,1))

        self.file = open(self.dataset_path, "r")
        for line in self.file:
            if line:
                line = line.strip()
                if line:
                    self.lines.append(line)
        self.file.close()             
        
        self.len = len(self.lines)
        self.seq_len = seq_len
        print("Sequence length set at ", self.seq_len, len(self.lines), len(self.labels) if self.label_path else 0)
        
    def __len__(self):
        return self.len
    
    def __getitem__(self, item):
        org_line = self.lines[item].split("\t")
        dup_line = []
        opt = False
        for l in org_line:
            if l in ["OptionalTask_1", "EquationAnswer", "NumeratorFactor", "DenominatorFactor", "OptionalTask_2", "FirstRow1:1", "FirstRow1:2", "FirstRow2:1", "FirstRow2:2", "SecondRow", "ThirdRow"]:
                opt = True
            if opt and 'FinalAnswer-' in l: 
                dup_line.append('[UNK]')
            else:
                dup_line.append(l)
        dup_line = "\t".join(dup_line)
        # print(dup_line)
        s1 = self.vocab.to_seq(dup_line, self.seq_len) # This is like tokenizer and adds [CLS] and [SEP].
        s1_label = self.labels[item] if self.label_path else 0
        segment_label = [1 for _ in range(len(s1))]
        s1_feat = self.feats[item] if len(self.feats)>0 else 0
        padding = [self.vocab.vocab['[PAD]'] for _ in range(self.seq_len - len(s1))]
        s1.extend(padding), segment_label.extend(padding)
        
        output = {'input': s1,
                 'label': s1_label,
                  'feat': s1_feat,
                 'segment_label': segment_label}
        return {key: torch.tensor(value) for key, value in output.items()}
        
        
class TokenizerDatasetForCalibration(Dataset):
    """
        Class name: TokenizerDataset
        Tokenize the data in the dataset
        
    """
    def __init__(self, dataset_path, label_path, vocab, seq_len=30):
        self.dataset_path = dataset_path
        self.label_path = label_path
        self.vocab = vocab # Vocab object
        # self.encoder = OneHotEncoder(sparse=False)
        
        # Related to input dataset file
        self.lines = []
        self.labels = []
        self.feats = []
        if self.label_path:
            self.label_file = open(self.label_path, "r")
            for line in self.label_file:
                if line:
                    line = line.strip()
                    if not line:
                        continue
                    self.labels.append(int(line))
            self.label_file.close()
            
            # Comment this section if you are not using feat attribute
            try:
                j = 0
                dataset_info_file = open(self.label_path.replace("label", "info"), "r")
                for line in dataset_info_file:
                    if line:
                        line = line.strip()
                        if not line:
                            continue
                      
                        # # highGRschool_w_prior
                        # feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
                        
                        # highGRschool_w_prior_w_diffskill_wo_fa
                        feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
                        feat2 = [float(i) for i in line.split(",")[-2].split("\t")]
                        feat_vec.extend(feat2[1:])
                        
#                         # highGRschool_w_prior_w_diffskill_0fa_skill
#                         feat_vec = [float(i) for i in line.split(",")[-3].split("\t")]
#                         feat2 = [float(i) for i in line.split(",")[-2].split("\t")]
#                         fa_feat_vec = [float(i) for i in line.split(",")[-1].split("\t")]
                        
#                         diff_skill = [f2 if f1==0 else 0 for f2, f1 in zip(feat2, fa_feat_vec)]
#                         feat_vec.extend(diff_skill)
                         
                        if j == 0:
                            print(len(feat_vec))
                            j+=1
                        
                        # feat_vec.extend(feat2[1:])
                        # feat_vec.extend(feat2)
                        # feat_vec = [float(i) for i in line.split(",")[-2].split("\t")]
                        # feat_vec = feat_vec[1:]
                        # feat_vec = [float(line.split(",")[-1])]
                        # feat_vec = [float(i) for i in line.split(",")[-1].split("\t")]
                        # feat_vec = [ft-f1 for ft, f1 in zip(feat_vec, fa_feat_vec)]

                        self.feats.append(feat_vec)
                dataset_info_file.close()
            except Exception as e:
                print(e)
            # labeler = np.array([0, 1]) #np.unique(self.labels)
            # print(f"Labeler {labeler}")
            # self.encoder.fit(labeler.reshape(-1,1))
            # self.labels = self.encoder.transform(np.array(self.labels).reshape(-1,1))

        self.file = open(self.dataset_path, "r")
        for line in self.file:
            if line:
                line = line.strip()
                if line:
                    self.lines.append(line)
        self.file.close()             
        
        self.len = len(self.lines)
        self.seq_len = seq_len
        print("Sequence length set at ", self.seq_len, len(self.lines), len(self.labels) if self.label_path else 0)
        
    def __len__(self):
        return self.len
    
    def __getitem__(self, item):
        org_line = self.lines[item].split("\t")
        dup_line = []
        opt = False
        for l in org_line:
            if l in ["OptionalTask_1", "EquationAnswer", "NumeratorFactor", "DenominatorFactor", "OptionalTask_2", "FirstRow1:1", "FirstRow1:2", "FirstRow2:1", "FirstRow2:2", "SecondRow", "ThirdRow"]:
                opt = True
            if opt and 'FinalAnswer-' in l: 
                dup_line.append('[UNK]')
            else:
                dup_line.append(l)
        dup_line = "\t".join(dup_line)
        # print(dup_line)
        s1 = self.vocab.to_seq(dup_line, self.seq_len) # This is like tokenizer and adds [CLS] and [SEP].
        s1_label = self.labels[item] if self.label_path else 0
        segment_label = [1 for _ in range(len(s1))]
        s1_feat = self.feats[item] if len(self.feats)>0 else 0
        padding = [self.vocab.vocab['[PAD]'] for _ in range(self.seq_len - len(s1))]
        s1.extend(padding), segment_label.extend(padding)
        
        output = {'input': s1,
                 'label': s1_label,
                  'feat': s1_feat,
                 'segment_label': segment_label}
        return ({key: torch.tensor(value) for key, value in output.items()}, s1_label)
        
        
        
        # if __name__ == "__main__":
#     # import pickle
#     # k = pickle.load(open("dataset/CL4999_1920/unique_steps_list.pkl","rb"))
#     # print(k)
#     vocab_obj = Vocab("pretraining/vocab.txt")
#     vocab_obj.load_vocab()
#     datasetTrain = PretrainerDataset("pretraining/pretrain.txt", vocab_obj)
    
#     print(datasetTrain, len(datasetTrain))#, datasetTrain.documents_index)
#     print(datasetTrain[len(datasetTrain)-1])
#     for i, d in enumerate(datasetTrain):
#         print(d.items())
#         break
        
#     fine_tune = TokenizerDataset("finetuning/finetune.txt", "finetuning/finetune_label.txt", vocab_obj)
#     print(fine_tune)
#     print(fine_tune[len(fine_tune)-1])
#     print(fine_tune[random.randint(0, len(fine_tune))])
#     for i, d in enumerate(fine_tune):
#         print(d.items())
#         break