Intelligent-SFT / app.py
suriya7's picture
Update app.py
ae744dd verified
raw
history blame
3.33 kB
import gradio as gr
import pprint
import subprocess
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer
from transformers import AutoTokenizer, AutoModelForCausalLM
result = subprocess.run(["lscpu"], text=True, capture_output=True)
pprint.pprint(result.stdout)
tokenizer = AutoTokenizer.from_pretrained("suriya7/Gemma-2b-SFT")
model = AutoModelForCausalLM.from_pretrained("suriya7/Gemma-2b-SFT")
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
inputs = tokenizer(
[
alpaca_prompt.format(
"You are an AI assistant. Please ensure that the answers conclude with an end-of-sequence (EOS) token.", # instruction
user_text, # input goes here
"", # output - leave this blank for generation!
)
], return_tensors = "pt")
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=250,
do_sample=True,
repetition_penalty=1.5,
temperature=0.7,
top_k=2,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Pull the generated text from the streamer, and update the model output.
model_output = ""
for new_text in streamer:
model_output += new_text
yield model_output
return model_output
def reset_textbox():
return gr.update(value="")
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=4):
user_text = gr.Textbox(
label="User input",
)
model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
button_submit = gr.Button(value="Submit")
with gr.Column(scale=1):
max_new_tokens = gr.Slider(
minimum=1,
maximum=1000,
value=250,
step=1,
interactive=True,
label="Max New Tokens",
)
top_k = gr.Slider(
minimum=1,
maximum=50,
value=50,
step=1,
interactive=True,
label="Top-k",
)
temperature = gr.Slider(
minimum=0.1,
maximum=5.0,
value=0.8,
step=0.1,
interactive=True,
label="Temperature",
)
user_text.submit(
run_generation,
[user_text],
model_output,
)
button_submit.click(
run_generation,
[user_text],
model_output,
)
demo.queue(max_size=32).launch(server_name="0.0.0.0")
# For local use:
# demo.launch(server_name="0.0.0.0")