Intelligent-SFT / app.py
suriya7's picture
Update app.py
0f4223a verified
raw
history blame
3.62 kB
import gradio as gr
import pprint
import subprocess
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer
result = subprocess.run(["lscpu"], text=True, capture_output=True)
pprint.pprint(result.stdout)
checkpoint = "suriya7/Gemma-2b-SFT"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
inputs = tokenizer(
[
alpaca_prompt.format(
"You are an AI assistant. Please ensure that the answers conclude with an end-of-sequence (EOS) token.", # instruction
user_text, # input goes here
"", # output - leave this blank for generation!
)
], return_tensors = "pt",return_dict=True)
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=float(temperature),
top_k=top_k,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Pull the generated text from the streamer, and update the model output.
model_output = ""
for new_text in streamer:
model_output += new_text
yield model_output
return model_output
def reset_textbox():
return gr.update(value="")
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=4):
user_text = gr.Textbox(
label="User input",
)
model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
button_submit = gr.Button(value="Submit")
with gr.Column(scale=1):
max_new_tokens = gr.Slider(
minimum=1,
maximum=1000,
value=250,
step=1,
interactive=True,
label="Max New Tokens",
)
top_p = gr.Slider(
minimum=0.05,
maximum=1.0,
value=0.95,
step=0.05,
interactive=True,
label="Top-p (nucleus sampling)",
)
top_k = gr.Slider(
minimum=1,
maximum=50,
value=50,
step=1,
interactive=True,
label="Top-k",
)
temperature = gr.Slider(
minimum=0.1,
maximum=5.0,
value=0.8,
step=0.1,
interactive=True,
label="Temperature",
)
user_text.submit(
run_generation,
[user_text, top_p, temperature, top_k, max_new_tokens],
model_output,
)
button_submit.click(
run_generation,
[user_text, top_p, temperature, top_k, max_new_tokens],
model_output,
)
demo.queue(max_size=32).launch(enable_queue=True, server_name="0.0.0.0")
# For local use:
# demo.launch(server_name="0.0.0.0")