File size: 22,530 Bytes
d59eaa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
# ==============================================================================
# Aura Mind Glow - Main Application (Refactored)
# ==============================================================================
"""
This script launches the Aura Mind Glow application, now with multiple modes.
"""

# --- Step 0: Essential Imports ---
import gradio as gr
from PIL import Image
import os
import warnings
import socket
import tempfile
import json # New import
import re

from google.cloud import bigquery

# Suppress potential warnings for a cleaner console
warnings.filterwarnings("ignore")
os.environ["TORCH_COMPILE_DISABLE"] = "1"  # Ensure torch compile is off

# --- Step 1: Import Core Components from Modules ---
from vision_model import load_vision_model
from knowledge_base import KnowledgeBase
from agent_setup import initialize_adk
from google.genai import types
from story_generator import create_story_prompt_from_pdf, generate_video_from_prompt
from langchain_huggingface import HuggingFaceEndpoint
from bigquery_uploader import upload_diagnosis_to_bigquery

print("βœ… All libraries imported successfully.")

# --- Step 2: Global Initialization ---
# This expensive setup runs only ONCE when the application starts.

print("Performing initial setup...")
VISION_MODEL, PROCESSOR = load_vision_model()
KB = KnowledgeBase()
RETRIEVER = KB # The retriever is now the KB itself

# Initialize ADK components for Connected Mode
adk_components = initialize_adk(VISION_MODEL, PROCESSOR, RETRIEVER)
ADK_RUNNER = adk_components["runner"] if adk_components else None
DIAGNOSIS_TOOL = adk_components["diagnosis_tool"] if adk_components else None
REMEDY_TOOL = adk_components["remedy_tool"] if adk_components else None
SESSION_SERVICE = adk_components["session_service"] if adk_components else None

# Initialize a separate LLM for the Story Generator
STORY_LLM = None
if os.environ.get("HF_TOKEN"):
    try:
        STORY_LLM = HuggingFaceEndpoint(
            repo_id="HuggingFaceH4/zephyr-7b-beta",
            huggingfacehub_api_token=os.environ.get("HF_TOKEN"),
            max_new_tokens=150,
            temperature=0.4,
        )
        print("βœ… Story Generator LLM initialized successfully.")
    except Exception as e:
        print(f"❌ Could not initialize Story Generator LLM: {e}")
else:
    print("❌ HF_TOKEN not found. Story Generator Mode will be disabled.")


# --- Step 3: Define Gradio UIs ---

def create_field_mode_ui():
    """Creates the Gradio UI for the offline Field Mode."""

    def clean_diagnosis_text(diagnosis: str) -> str:
        """
        Cleans the diagnosis text by removing special characters and extra whitespace.
        This function is designed to prepare the text for a BigQuery SEARCH query.
        """
        # Remove special characters, keeping only letters, numbers, and basic punctuation.
        # This will remove characters like *, #, etc.
        cleaned_text = re.sub(r'[^\w\s.\-,"]', '', diagnosis)
        # Replace multiple whitespace characters with a single space
        cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip()
        return cleaned_text

    def search_bigquery_for_remedy(search_query: str) -> str:
        """
        Searches the BigQuery table for a remedy using the SEARCH function.
        """
        try:
            # Initialize the BigQuery client. Your project ID is used here.
            client = bigquery.Client(project="gem-creation")

            # Define the SQL query with the SEARCH function and a parameter for safety.
            query = """
                SELECT
                  remedy_description
                FROM
                  `gem-creation.maize_remedies.remedies`
                WHERE
                  SEARCH(remedy_description, @query)
            """

            # Set up the query parameters.
            job_config = bigquery.QueryJobConfig(
                query_parameters=[
                    bigquery.ScalarQueryParameter("query", "STRING", search_query),
                ]
            )

            # Execute the query.
            print(f"Executing BigQuery search for: '{search_query}'")
            query_job = client.query(query, job_config=job_config)

            # Process the results.
            results = list(query_job)  # Get all results

            if not results:
                print("No remedy found in BigQuery.")
                return "No remedy found in the cloud knowledge base for this condition."
            else:
                # The result is a Row object; access the column by its name.
                remedy = results[0].remedy_description
                print("Remedy found in BigQuery.")
                return remedy

        except Exception as e:
            error_message = f"An error occurred while querying the BigQuery database: {e}"
            print(f"❌ {error_message}")
            return error_message


    def get_diagnosis_and_remedy(uploaded_image: Image.Image) -> str:
        if uploaded_image is None:
            return "Please upload an image of a maize plant first."
        if RETRIEVER is None:
            raise gr.Error("Knowledge base is not loaded. Cannot find remedy. Check logs.")

        temp_file_path = None
        try:
            with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
                uploaded_image.save(temp_file.name)
                temp_file_path = temp_file.name

            diagnosis = DIAGNOSIS_TOOL(temp_file_path)
            print(f"Diagnosis received: {diagnosis}")

            if "Could not parse" in diagnosis:
                return f"Sorry, I couldn't identify the condition from the image. Raw output: {diagnosis}"

            # Clean the diagnosis text before using it as a search query
            report_title = diagnosis # Keep the original diagnosis for the report
            cleaned_diagnosis = clean_diagnosis_text(diagnosis)

            # Determine the search query based on keywords
            if "healthy" in cleaned_diagnosis.lower():
                search_query = "healthy maize"
            elif "phosphorus" in cleaned_diagnosis.lower():
                search_query = "phosphorus"
            else:
                search_query = "Wetin My Eye See So"


            results = search_bigquery_for_remedy(search_query)
            
            if not results:
                remedy = "No remedy found in the local knowledge base."
            else:
                remedy = results

            final_response = f"""
            ## Diagnosis Report
            **Condition Identified:**
            ### {report_title}
            ---
            ## Suggested Remedy
            {remedy}
            """
            print("Workflow complete. Returning response.")

            # Prepare data for BigQuery upload
            diagnosis_data = {
                "ai_diagnosis": report_title,
                "recommended_action": remedy,
                "confidence_score": None, # Placeholder, as confidence score is not calculated here
                "farmer_id": "unknown", # Placeholder
                "gps_latitude": None, # Placeholder
                "gps_longitude": None, # Placeholder
                "crop_type": "Maize", # Assuming maize for this app
                "crop_variety": None, # Placeholder
                "farmer_feedback": None, # Placeholder
                "treatment_applied": None, # Placeholder
                "outcome_image_id": None, # Placeholder
            }
            upload_diagnosis_to_bigquery(diagnosis_data)

            return final_response

        except Exception as e:
            print(f"An error occurred during the analysis workflow: {e}")
            raise gr.Error(f"An unexpected error occurred: {e}")
        finally:
            if temp_file_path and os.path.exists(temp_file_path):
                os.remove(temp_file_path)

    # ... (the rest of your Gradio Interface definition remains the same) 
    css = """
    footer {visibility: hidden !important;}
    .gradio-container {font-family: 'IBM Plex Sans', sans-serif;}
    """

    return gr.Interface(
        fn=get_diagnosis_and_remedy,
        inputs=gr.Image(type="pil", label="Upload Maize Plant Image", sources=["upload", "webcam"]),
        outputs=gr.Markdown(label="Diagnosis and Remedy Report", value="The report will appear here..."),
        title="🌽 Aura Mind Glow: Field Mode (Offline)",
        description="**A 100% Offline-Capable Farming Assistant.** Upload an image of a maize plant. The AI will diagnose its condition and retrieve a treatment plan from its local knowledge base.",
        article="<p style='text-align: center;'>Built with Unsloth, LangChain, and Gradio. Version 2.1</p>",
        allow_flagging="never",
        theme=gr.themes.Soft(primary_hue="teal", secondary_hue="orange"),
        css=css
    )

def create_connected_mode_ui():
    """Creates the Gradio UI for the online Connected Mode."""
    # ... (This function remains unchanged) ...
    with gr.Blocks(theme=gr.themes.Soft(primary_hue="green", secondary_hue="lime")) as demo:
        gr.Markdown("# 🌽 Aura Mind Glow: Connected Mode πŸ€–")
        gr.Markdown("I am an AI farming assistant. Upload an image and ask for a diagnosis and remedy.")

        chatbot = gr.Chatbot(height=600)
        msg = gr.MultimodalTextbox(file_types=["image"], label="Ask a question and/or upload an image...")

        async def respond(chat_input, history):
            user_id = "default_user"  # In a real app, this would be unique per user
            if not SESSION_SERVICE or not ADK_RUNNER:
                history.append((chat_input["text"], "Connected mode is not available. Check logs."))
                yield history, gr.MultimodalTextbox(value=None)
                return

            session = await SESSION_SERVICE.create_session(user_id=user_id, app_name="AuraMindGlow")

            files = chat_input.get("files", [])
            text = chat_input.get("text", "")

            if not files:
                history.append([text, "Please upload an image for diagnosis."])
                yield history, gr.MultimodalTextbox(value=None)
                return

            # Create the prompt for the ADK agent
            with open(files[0], 'rb') as f:
                image_data = f.read()
            image_part = types.Part(
                inline_data=types.Blob(
                    mime_type='image/png',
                    data=image_data
                )
            )
            text_part = types.Part(text=text or "Diagnose this plant and provide a remedy.")
            prompt = types.Content(parts=[image_part, text_part], role="user")

            # Stream the response from the agent
            bot_message = ""
            history.append([(files[0],), bot_message])

            try:
                async for event in ADK_RUNNER.run_async(
                    session_id=session.id, user_id=user_id, new_message=prompt
                ):
                    if event.is_llm_response_chunk() and event.content.parts:
                        bot_message += event.content.parts[0].text
                        history[-1] = ((files[0],), bot_message)
                        yield history, gr.MultimodalTextbox(value=None)
                    elif event.is_final_response() and event.content.parts:
                        bot_message = event.content.parts[0].text
                        history[-1] = ((files[0],), bot_message)
                        yield history, gr.MultimodalTextbox(value=None)

            except Exception as e:
                print(f"Error during agent execution: {e}")
                history[-1] = ((files[0],), f"An error occurred: {e}")
                yield history, gr.MultimodalTextbox(value=None)


        msg.submit(respond, [msg, chatbot], [chatbot, msg])

    return demo

def create_document_analysis_ui():
    """Creates the Gradio UI for the Document Analysis Mode."""
    with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="pink")) as demo:
        gr.Markdown("# 🌽 Aura Mind Glow: Document Analysis Mode πŸ“„")
        gr.Markdown("Upload a PDF or a spreadsheet and ask questions about its content.")

        with gr.Row():
            with gr.Column(scale=1):
                doc_input = gr.File(label="Upload Document", file_types=[".pdf", ".csv"])
                query_input = gr.Textbox(label="Ask a question about the document")
                submit_btn = gr.Button("Analyze and Query")
            with gr.Column(scale=2):
                answer_output = gr.Textbox(label="Answer", interactive=False, lines=10)
                status_output = gr.Textbox(label="Status", interactive=False, lines=3)

        def analysis_process(doc, query):
            if doc is None:
                yield "Please upload a document to begin.", ""
                return

            file_path = doc.name
            file_ext = os.path.splitext(file_path)[1].lower()

            if file_ext == ".pdf":
                yield "Analyzing PDF...", ""
                chain, vector_store = analyze_pdf(file_path)
                if chain and vector_store:
                    yield "PDF analyzed successfully. Now querying...", ""
                    answer = query_pdf(chain, vector_store, query)
                    yield answer, "Query complete."
                else:
                    yield "Failed to analyze PDF.", "Error"
            elif file_ext == ".csv":
                yield "Analyzing spreadsheet...", ""
                agent = analyze_spreadsheet(file_path)
                if agent:
                    yield "Spreadsheet analyzed successfully. Now querying...", ""
                    answer = query_spreadsheet(agent, query)
                    yield answer, "Query complete."
                else:
                    yield "Failed to analyze spreadsheet.", "Error"
            else:
                yield "Unsupported file type. Please upload a PDF or a CSV file.", "Error"

        submit_btn.click(
            analysis_process,
            inputs=[doc_input, query_input],
            outputs=[answer_output, status_output]
        )
    return demo


def create_story_mode_ui():
    """Creates the Gradio UI for the Farmer's Story Mode."""
    with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="yellow")) as demo:
        gr.Markdown("# 🌽 Aura Mind Glow: Farmer's Story Mode 🎬")
        gr.Markdown("Create a short video story from your farm documents. Upload a PDF, describe the mood, and let the AI create a visual story.")

        with gr.Row():
            with gr.Column(scale=1):
                pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
                image_input = gr.Image(type="filepath", label="Optional: Upload a Starting Image")
                user_prompt_input = gr.Textbox(label="Describe the video's tone or theme", placeholder="e.g., hopeful, a look back at a tough season, etc.")
                submit_btn = gr.Button("Generate Video Story")
            with gr.Column(scale=2):
                video_output = gr.Video(label="Generated Video Story")
                status_output = gr.Textbox(label="Status", interactive=False, lines=3)

        def story_generation_process(pdf, image, user_prompt):
            if pdf is None:
                yield None, "Please upload a PDF document to begin."
                return

            yield None, "Step 1: Reading PDF and generating creative prompt..."

            creative_prompt = create_story_prompt_from_pdf(pdf.name, user_prompt, STORY_LLM)

            if "Error" in creative_prompt:
                yield None, creative_prompt
                return

            yield None, f"Step 2: Generating video with prompt: '{creative_prompt[:100]}...' (This may take several minutes)"

            video_path = generate_video_from_prompt(creative_prompt, image)

            if "Error" in video_path:
                yield None, video_path
                return

            yield video_path, "Video generation complete!"

        submit_btn.click(
            story_generation_process,
            inputs=[pdf_input, image_input, user_prompt_input],
            outputs=[video_output, status_output]
        )
    return demo

def create_settings_ui():
    """Creates the Gradio UI for the Settings tab."""
    with gr.Blocks(theme=gr.themes.Soft(primary_hue="gray", secondary_hue="blue")) as demo:
        gr.Markdown("# βš™οΈ Settings & Data Management")
        gr.Markdown("Manage application settings and data synchronization.")

        with gr.Row():
            with gr.Column():
                sync_btn = gr.Button("☁️ Sync Local Data to BigQuery Cloud")
                status_output = gr.Textbox(label="Sync Status", interactive=False, lines=5)

        def sync_data_to_cloud():
            yield "Local data sync is no longer required as diagnoses are uploaded directly to BigQuery."

        sync_btn.click(
            sync_data_to_cloud,
            inputs=[],
            outputs=[status_output]
        )
    return demo

def create_kb_management_ui():
    """Creates the Gradio UI for managing the knowledge base."""
    with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="purple")) as demo:
        gr.Markdown("# πŸ“š Knowledge Base Management")
        gr.Markdown("Manage the local, encrypted knowledge base.")

        with gr.Row():
            with gr.Column():
                gr.Markdown("### Rebuild Knowledge Base")
                rebuild_btn = gr.Button("Rebuild from Source Files")
                rebuild_status = gr.Textbox(label="Status", interactive=False)

            with gr.Column():
                gr.Markdown("### Add PDF to Knowledge Base")
                pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
                ingest_btn = gr.Button("Ingest PDF")
                ingest_status = gr.Textbox(label="Status", interactive=False)

        def rebuild_kb():
            yield "Rebuilding knowledge base..."
            try:
                KB.rebuild_from_default_files() # Call the new method to rebuild from default files
                yield "Knowledge base rebuilt successfully."
            except Exception as e:
                yield f"Error rebuilding knowledge base: {e}"

        def ingest_pdf(pdf):
            if pdf is None:
                return "Please upload a PDF file."
            yield "Ingesting PDF..."
            try:
                KB.ingest_pdf(pdf.name, os.path.basename(pdf.name))
                yield f"Successfully ingested {os.path.basename(pdf.name)}."
            except Exception as e:
                yield f"Error ingesting PDF: {e}"

        rebuild_btn.click(rebuild_kb, outputs=[rebuild_status])
        ingest_btn.click(ingest_pdf, inputs=[pdf_input], outputs=[ingest_status])

    return demo

# --- Step 4: App Launcher ---

def check_internet_connection(host="8.8.8.8", port=53, timeout=3):
    """Check for internet connectivity."""
    try:
        socket.setdefaulttimeout(timeout)
        socket.socket(socket.AF_INET, socket.SOCK_STREAM).connect((host, port))
        return True
    except socket.error:
        return False


def _setup_gcp_credentials():
    """
    Sets up Google Cloud credentials from an environment variable.
    If GOOGLE_APPLICATION_CREDENTIALS contains a JSON string, it writes
    it to a temporary file and updates the environment variable to point
    to that file. This is useful for environments like Hugging Face Spaces
    where secrets are provided as string values.
    """
    gcp_credentials_json = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS")
    if gcp_credentials_json and gcp_credentials_json.strip().startswith("{"):
        try:
            # Validate JSON
            credentials_dict = json.loads(gcp_credentials_json)
            
            # Create a temporary file to store the credentials
            temp_dir = tempfile.gettempdir()
            temp_file_path = os.path.join(temp_dir, "gcp_credentials.json")
            
            with open(temp_file_path, "w") as f:
                json.dump(credentials_dict, f)
            
            os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = temp_file_path
            print(f"βœ… Google Cloud credentials successfully set from environment variable to: {temp_file_path}")
        except json.JSONDecodeError as e:
            print(f"❌ Error decoding GOOGLE_APPLICATION_CREDENTIALS JSON: {e}")
        except Exception as e:
            print(f"❌ An unexpected error occurred while setting up GCP credentials: {e}")
    else:
        print("ℹ️ GOOGLE_APPLICATION_CREDENTIALS environment variable not found or not a JSON string. Assuming credentials are set via other means (e.g., gcloud CLI, default ADC).")

if __name__ == "__main__":
    _setup_gcp_credentials()
    # No local database initialization needed

    field_mode_ui = create_field_mode_ui()
    interface_list = [field_mode_ui]
    tab_titles = ["Field Mode (Offline)"]

    # Conditionally add modes that require an internet connection
    if check_internet_connection():
        if ADK_RUNNER:
            connected_mode_ui = create_connected_mode_ui()
            interface_list.append(connected_mode_ui)
            tab_titles.append("Connected Mode")
        else:
            print("⚠️ Connected Mode disabled: ADK components not initialized.")

        if STORY_LLM:
            story_mode_ui = create_story_mode_ui()
            interface_list.append(story_mode_ui)
            tab_titles.append("Farmer's Story Mode")
        else:
            print("⚠️ Farmer's Story Mode disabled: Story LLM not initialized.")

        # Add the new Document Analysis UI
        document_analysis_ui = create_document_analysis_ui()
        interface_list.append(document_analysis_ui)
        tab_titles.append("Document Analysis")
        
        # Add the Settings UI
        settings_ui = create_settings_ui()
        interface_list.append(settings_ui)
        tab_titles.append("Settings")

        # Add the Knowledge Base Management UI
        kb_management_ui = create_kb_management_ui()
        interface_list.append(kb_management_ui)
        tab_titles.append("Knowledge Base")

    else:
        print("❌ No internet connection. Launching in Offline Mode only.")

    # Launch the appropriate UI
    if len(interface_list) > 1:
        ui = gr.TabbedInterface(interface_list, tab_titles)
    else:
        ui = field_mode_ui

    ui.launch(share=True, debug=True)