Spaces:
Sleeping
Sleeping
File size: 25,969 Bytes
a9f948c f24b4d8 a9f948c d59eaa6 a9f948c 0b83105 b4e7ec7 e4f78d3 d59eaa6 82e18e7 d59eaa6 e4f78d3 a61c2dd 2ce6777 e4f78d3 f24b4d8 e4f78d3 f24b4d8 cc9c554 f24b4d8 5ecf9f6 207a1da 032080e 20950eb 92a9c38 b4e7ec7 e4f78d3 b5b714b d59eaa6 b5b714b d59eaa6 f24b4d8 cc9c554 d59eaa6 92a9c38 35968cd 032080e f24b4d8 5ecf9f6 3206264 032080e 3206264 d59eaa6 3206264 d59eaa6 e4f78d3 2ce6777 82e18e7 a6d84c7 82e18e7 2ce6777 d59eaa6 2ce6777 5397a06 d59eaa6 5397a06 d59eaa6 5397a06 d59eaa6 5397a06 d59eaa6 a6d84c7 4223622 d59eaa6 5397a06 4223622 5397a06 d59eaa6 ff0b3dd 92a9c38 5397a06 4223622 d59eaa6 4223622 92a9c38 4223622 5397a06 4223622 d59eaa6 5397a06 a61c2dd 5397a06 a61c2dd 5397a06 a61c2dd 5397a06 a61c2dd 5397a06 a61c2dd 5397a06 a61c2dd 5397a06 a61c2dd 5397a06 a61c2dd 5397a06 a61c2dd 5397a06 a61c2dd 5397a06 a6d84c7 5397a06 d59eaa6 5397a06 d59eaa6 5397a06 d59eaa6 5397a06 d59eaa6 5397a06 d59eaa6 a61c2dd d59eaa6 b5187d4 d59eaa6 5397a06 d59eaa6 5397a06 a6d84c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
# ==============================================================================
# Aura Mind Glow - Main Application (Refactored)
# ==============================================================================
"""
This script launches the Aura Mind Glow application, now with multiple modes
and user authentication.
"""
# --- Step 0: Essential Imports ---
import gradio as gr
from PIL import Image
import os
import warnings
import socket
import tempfile
import json
import re
import requests # Added for authentication
from bigquery_search import search_bigquery_for_remedy
# Suppress potential warnings for a cleaner console
warnings.filterwarnings("ignore")
os.environ["TORCH_COMPILE_DISABLE"] = "1" # Ensure torch compile is off
# --- Step 1: Import Core Components from Modules ---
from vision_model import load_vision_model
from knowledge_base import KnowledgeBase
from agent_setup import initialize_adk
from google.genai import types
from google.cloud import bigquery
from story_generator import create_story_prompt_from_pdf, generate_video_from_prompt
from langchain_huggingface import HuggingFaceEndpoint
from bigquery_uploader import upload_diagnosis_to_bigquery
from vector_store import embed_and_store_documents, search_documents
print("β
All libraries imported successfully.")
# --- Step 2: Global and Authentication Initialization ---
# Authentication Configuration
GCP_API_KEY = os.environ.get("GCP_API_KEY")
if not GCP_API_KEY:
print("β οΈ WARNING: GCP_API_KEY environment variable not set. Authentication will fail.")
# Define placeholder URLs to avoid crashing, but they won't work
SIGNUP_URL = "YOUR_SIGNUP_URL_HERE"
LOGIN_URL = "YOUR_LOGIN_URL_HERE"
else:
SIGNUP_URL = f"https://identitytoolkit.googleapis.com/v1/accounts:signUp?key={GCP_API_KEY}"
LOGIN_URL = f"https://identitytoolkit.googleapis.com/v1/accounts:signInWithPassword?key={GCP_API_KEY}"
# This expensive setup runs only ONCE when the application starts.
print("Performing initial setup...")
VISION_MODEL, PROCESSOR = load_vision_model()
KB = KnowledgeBase()
RETRIEVER = KB # The retriever is now the KB itself
embed_and_store_documents() # Initialize and load the vector store
# Initialize ADK components for Connected Mode
adk_components = initialize_adk(VISION_MODEL, PROCESSOR, RETRIEVER)
ADK_RUNNER = adk_components["runner"] if adk_components else None
DIAGNOSIS_TOOL = adk_components["diagnosis_tool"] if adk_components else None
REMEDY_TOOL = adk_components["remedy_tool"] if adk_components else None
SESSION_SERVICE = adk_components["session_service"] if adk_components else None
# Initialize a separate LLM for the Story Generator
STORY_LLM = None
if os.environ.get("HF_TOKEN"):
try:
STORY_LLM = HuggingFaceEndpoint(
repo_id="HuggingFaceH4/zephyr-7b-beta",
huggingfacehub_api_token=os.environ.get("HF_TOKEN"),
max_new_tokens=150,
temperature=0.4,
)
print("β
Story Generator LLM initialized successfully.")
except Exception as e:
print(f"β Could not initialize Story Generator LLM: {e}")
else:
print("β HF_TOKEN not found. Story Generator Mode will be disabled.")
# --- Step 3: Authentication UI and Logic ---
def signup_user(email, password):
"""Signs up a new user using Google Identity Platform."""
payload = {
"email": email,
"password": password,
"returnSecureToken": True
}
try:
response = requests.post(SIGNUP_URL, json=payload)
response.raise_for_status() # Raise an exception for bad status codes
# No need to return anything on success, we'll just inform the user
return "β
Signup successful! You can now log in."
except requests.exceptions.HTTPError as err:
error_json = err.response.json()
error_message = error_json.get("error", {}).get("message", "Unknown error")
print(f"β Signup failed: {error_message}")
return f"β Signup failed: {error_message}"
except Exception as e:
print(f"β An unexpected error occurred during signup: {e}")
return "β An unexpected error occurred. See console for details."
def login_user(email, password):
"""Logs in a user and returns their session info."""
payload = {
"email": email,
"password": password,
"returnSecureToken": True
}
try:
response = requests.post(LOGIN_URL, json=payload)
response.raise_for_status()
user_data = response.json()
# Return a dictionary with user info, which will be stored in the state
return {
"uid": user_data["localId"],
"id_token": user_data["idToken"],
"email": user_data["email"]
}
except requests.exceptions.HTTPError as err:
# Don't raise an error, just return None to indicate login failure
print(f"Login failed for user: {email}")
return None
except Exception as e:
print(f"β An unexpected error occurred during login: {e}")
return None
# --- Step 4: Define Gradio UIs ---
def create_field_mode_ui(user_state):
"""Creates the Gradio UI for the offline Field Mode."""
def clean_diagnosis_text(diagnosis: str) -> str:
cleaned_text = re.sub(r'[^\w\s.\-,"]', '', diagnosis)
cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip()
return cleaned_text
def search_bigquery_for_remedy(search_query: str) -> str:
try:
client = bigquery.Client(project="gem-creation")
query = """
SELECT remedy_description FROM `gem-creation.maize_remedies.remedies`
WHERE SEARCH(remedy_description, @query)
"""
job_config = bigquery.QueryJobConfig(
query_parameters=[bigquery.ScalarQueryParameter("query", "STRING", search_query)]
)
query_job = client.query(query, job_config=job_config)
results = list(query_job)
return results[0].remedy_description if results else "No remedy found."
except Exception as e:
return f"Error querying BigQuery: {e}"
def get_diagnosis_and_remedy(uploaded_image: Image.Image, feedback: str):
"""
Performs diagnosis on an uploaded plant image and provides a remedy.
This tool takes an image of a plant, diagnoses its condition using a vision
model, and then searches both a local knowledge base and a cloud database
for a suitable remedy. It also logs the diagnosis for future analysis.
Args:
uploaded_image (Image.Image): The PIL Image of the plant to be diagnosed.
feedback (str): Optional user feedback on the diagnosis or remedy.
Returns:
str: A formatted markdown string containing the diagnosis report
and suggested remedies from local and cloud sources.
"""
if uploaded_image is None:
return "Please upload an image."
# Handle different contexts for user_state (UI vs. API call)
farmer_id = "api_call_user" # Default user for API calls
if hasattr(user_state, 'get') and user_state.get("uid"):
# This block runs for UI users who are logged in
farmer_id = user_state.get("uid")
elif not hasattr(user_state, 'get'):
# This block runs for API calls where user_state is not a dict-like object
print("API call detected, proceeding with default farmer_id.")
else:
# This block runs for UI users who are not logged in
raise gr.Error("Authentication error. Please log out and log in again.")
temp_file_path = None
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
uploaded_image.save(temp_file.name)
temp_file_path = temp_file.name
diagnosis = DIAGNOSIS_TOOL(temp_file_path)
if "Could not parse" in diagnosis:
return f"Could not identify condition: {diagnosis}"
report_title = diagnosis
cleaned_diagnosis = clean_diagnosis_text(diagnosis)
# --- Hybrid Search ---
local_remedy_list = search_documents(cleaned_diagnosis)
local_remedy = local_remedy_list[0] if local_remedy_list else "No remedy found in local knowledge base."
search_query = "healthy maize" if "healthy" in cleaned_diagnosis.lower() else "phosphorus" if "phosphorus" in cleaned_diagnosis.lower() else "Wetin My Eye See So"
cloud_remedy = search_bigquery_for_remedy(search_query)
final_response = f"""
## Diagnosis Report
**Condition:**
### {report_title}
---
## Suggested Remedy (from Cloud)
{cloud_remedy}
"""
diagnosis_data = {
"ai_diagnosis": report_title,
"recommended_action": local_remedy,
"confidence_score": None,
"farmer_id": farmer_id, # Use the determined farmer_id
"gps_latitude": None,
"gps_longitude": None,
"crop_type": "Maize",
"crop_variety": None,
"farmer_feedback": feedback,
"treatment_applied": None,
"outcome_image_id": None,
}
upload_diagnosis_to_bigquery(diagnosis_data)
return final_response
finally:
if temp_file_path:
os.remove(temp_file_path)
with gr.Blocks() as field_mode_blocks:
gr.Markdown("### π½ Aura Mind Glow: Field Mode")
gr.Markdown("Upload an image of a maize plant for diagnosis and treatment.")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload Maize Plant Image", sources=["upload", "webcam"])
feedback_input = gr.Textbox(label="Provide Feedback on the Remedy (Optional)", placeholder="e.g., This remedy worked well...")
submit_btn = gr.Button("Get Diagnosis")
with gr.Column():
output_markdown = gr.Markdown(label="Diagnosis and Remedy Report")
submit_btn.click(
fn=get_diagnosis_and_remedy,
inputs=[image_input, feedback_input],
outputs=output_markdown
)
return field_mode_blocks
# --- All other UI creation functions (create_connected_mode_ui, etc.) remain the same ---
# Note: For a full implementation, you would pass the user_state to other UIs
# and use the farmer_id there as well.
def create_connected_mode_ui(user_state):
"""Creates the Gradio UI for the online Connected Mode."""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green", secondary_hue="lime")) as demo:
gr.Markdown("# π½ Aura Mind Glow: Connected Mode π€")
gr.Markdown("I am an AI farming assistant. Upload an image and ask for a diagnosis and remedy.")
chatbot = gr.Chatbot(height=600)
msg = gr.MultimodalTextbox(file_types=["image"], label="Ask a question and/or upload an image...")
async def respond(chat_input, history, user_state):
if not user_state or not user_state.get("uid"):
history.append((chat_input.get("text", ""), "Authentication error. Please log out and log in again."))
yield history, gr.MultimodalTextbox(value=None)
return
user_id = user_state["uid"]
if not SESSION_SERVICE or not ADK_RUNNER:
history.append((chat_input.get("text", ""), "Connected mode is not available. Check logs."))
yield history, gr.MultimodalTextbox(value=None)
return
session = await SESSION_SERVICE.create_session(user_id=user_id, app_name="AuraMindGlow")
files = chat_input.get("files", [])
text = chat_input.get("text", "")
if not files and not text:
# If there is no input, do nothing
yield history, gr.MultimodalTextbox(value=None)
return
if not files:
history.append((text, "Please upload an image for diagnosis."))
yield history, gr.MultimodalTextbox(value=None)
return
# Create the prompt for the ADK agent
with open(files[0], 'rb') as f:
image_data = f.read()
image_part = types.Part(
inline_data=types.Blob(
mime_type='image/png',
data=image_data
)
)
text_part = types.Part(text=text or "Diagnose this plant and provide a remedy.")
prompt = types.Content(parts=[image_part, text_part], role="user")
# Stream the response from the agent
bot_message = ""
history.append([(files[0], text), bot_message])
try:
async for event in ADK_RUNNER.run_async(
session_id=session.id, user_id=user_id, new_message=prompt
):
if event.is_llm_response_chunk() and event.content.parts:
bot_message += event.content.parts[0].text
history[-1] = (((files[0], text), bot_message))
yield history, gr.MultimodalTextbox(value=None)
elif event.is_final_response() and event.content.parts:
bot_message = event.content.parts[0].text
history[-1] = (((files[0], text), bot_message))
yield history, gr.MultimodalTextbox(value=None)
except Exception as e:
print(f"Error during agent execution: {e}")
history[-1] = (((files[0], text), f"An error occurred: {e}"))
yield history, gr.MultimodalTextbox(value=None)
msg.submit(respond, [msg, chatbot, user_state], [chatbot, msg])
return demo
def create_document_analysis_ui():
"""Creates the Gradio UI for the Document Analysis Mode."""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="pink")) as demo:
gr.Markdown("# π½ Aura Mind Glow: Document Analysis Mode π")
gr.Markdown("Upload a PDF or a spreadsheet and ask questions about its content.")
with gr.Row():
with gr.Column(scale=1):
doc_input = gr.File(label="Upload Document", file_types=[".pdf", ".csv"])
query_input = gr.Textbox(label="Ask a question about the document")
submit_btn = gr.Button("Analyze and Query")
with gr.Column(scale=2):
answer_output = gr.Textbox(label="Answer", interactive=False, lines=10)
status_output = gr.Textbox(label="Status", interactive=False, lines=3)
def analysis_process(doc, query):
if doc is None:
yield "Please upload a document to begin.", ""
return
file_path = doc.name
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext == ".pdf":
yield "Analyzing PDF...", ""
chain, vector_store = analyze_pdf(file_path)
if chain and vector_store:
yield "PDF analyzed successfully. Now querying...", ""
answer = query_pdf(chain, vector_store, query)
yield answer, "Query complete."
else:
yield "Failed to analyze PDF.", "Error"
elif file_ext == ".csv":
yield "Analyzing spreadsheet...", ""
agent = analyze_spreadsheet(file_path)
if agent:
yield "Spreadsheet analyzed successfully. Now querying...", ""
answer = query_spreadsheet(agent, query)
yield answer, "Query complete."
else:
yield "Failed to analyze spreadsheet.", "Error"
else:
yield "Unsupported file type. Please upload a PDF or a CSV file.", "Error"
submit_btn.click(
analysis_process,
inputs=[doc_input, query_input],
outputs=[answer_output, status_output]
)
return demo
def create_story_mode_ui():
"""Creates the Gradio UI for the Farmer's Story Mode."""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="yellow")) as demo:
gr.Markdown("# π½ Aura Mind Glow: Farmer's Story Mode π¬")
gr.Markdown("Create a short video story from your farm documents. Upload a PDF, describe the mood, and let the AI create a visual story.")
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
image_input = gr.Image(type="filepath", label="Optional: Upload a Starting Image")
user_prompt_input = gr.Textbox(label="Describe the video's tone or theme", placeholder="e.g., hopeful, a look back at a tough season, etc.")
submit_btn = gr.Button("Generate Video Story")
with gr.Column(scale=2):
video_output = gr.Video(label="Generated Video Story")
status_output = gr.Textbox(label="Status", interactive=False, lines=3)
def story_generation_process(pdf, image, user_prompt):
if pdf is None:
yield None, "Please upload a PDF document to begin."
return
yield None, "Step 1: Reading PDF and generating creative prompt..."
creative_prompt = create_story_prompt_from_pdf(pdf.name, user_prompt, STORY_LLM)
if "Error" in creative_prompt:
yield None, creative_prompt
return
yield None, f"Step 2: Generating video with prompt: '{creative_prompt[:100]}...' (This may take several minutes)"
video_path = generate_video_from_prompt(creative_prompt, image)
if "Error" in video_path:
yield None, video_path
return
yield video_path, "Video generation complete!"
submit_btn.click(
story_generation_process,
inputs=[pdf_input, image_input, user_prompt_input],
outputs=[video_output, status_output]
)
return demo
def create_settings_ui():
"""Creates the Gradio UI for the Settings tab."""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="gray", secondary_hue="blue")) as demo:
gr.Markdown("# βοΈ Settings & Data Management")
gr.Markdown("Manage application settings and data synchronization.")
with gr.Row():
with gr.Column():
sync_btn = gr.Button("βοΈ Sync Local Data to BigQuery Cloud")
status_output = gr.Textbox(label="Sync Status", interactive=False, lines=5)
def sync_data_to_cloud():
yield "Local data sync is no longer required as diagnoses are uploaded directly to BigQuery."
sync_btn.click(
sync_data_to_cloud,
inputs=[],
outputs=[status_output]
)
return demo
def create_kb_management_ui():
"""Creates the Gradio UI for managing the knowledge base."""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="purple")) as demo:
gr.Markdown("# π Knowledge Base Management")
gr.Markdown("Manage the local, encrypted knowledge base.")
with gr.Row():
with gr.Column():
gr.Markdown("### Rebuild Knowledge Base")
rebuild_btn = gr.Button("Rebuild from Source Files")
rebuild_status = gr.Textbox(label="Status", interactive=False)
with gr.Column():
gr.Markdown("### Add PDF to Knowledge Base")
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
ingest_btn = gr.Button("Ingest PDF")
ingest_status = gr.Textbox(label="Status", interactive=False)
def rebuild_kb():
yield "Rebuilding knowledge base..."
try:
KB.rebuild_from_default_files() # Call the new method to rebuild from default files
yield "Knowledge base rebuilt successfully."
except Exception as e:
yield f"Error rebuilding knowledge base: {e}"
def ingest_pdf(pdf):
if pdf is None:
return "Please upload a PDF file."
yield "Ingesting PDF..."
try:
KB.ingest_pdf(pdf.name, os.path.basename(pdf.name))
yield f"Successfully ingested {os.path.basename(pdf.name)}."
except Exception as e:
yield f"Error ingesting PDF: {e}"
rebuild_btn.click(rebuild_kb, outputs=[rebuild_status])
ingest_btn.click(ingest_pdf, inputs=[pdf_input], outputs=[ingest_status])
return demo
# --- Step 5: App Launcher ---
def check_internet_connection(host="8.8.8.8", port=53, timeout=3):
"""Check for internet connectivity."""
try:
socket.setdefaulttimeout(timeout)
socket.socket(socket.AF_INET, socket.SOCK_STREAM).connect((host, port))
return True
except socket.error:
return False
def _setup_gcp_credentials():
gcp_credentials_json = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS")
if gcp_credentials_json and gcp_credentials_json.strip().startswith("{"):
try:
credentials_dict = json.loads(gcp_credentials_json)
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.json') as temp_file:
json.dump(credentials_dict, temp_file)
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = temp_file.name
print(f"β
GCP credentials set from env var to: {os.environ['GOOGLE_APPLICATION_CREDENTIALS']}")
except Exception as e:
print(f"β Error setting up GCP credentials: {e}")
else:
print("βΉοΈ GOOGLE_APPLICATION_CREDENTIALS not found as JSON string. Using other means.")
if __name__ == "__main__":
_setup_gcp_credentials()
with gr.Blocks(theme=gr.themes.Soft(), css="footer {visibility: hidden !important;}") as demo:
user_state = gr.State(None) # To hold user session info (uid, token, etc)
# --- Login UI ---
with gr.Column(visible=True) as login_view:
gr.Markdown("# Welcome to Aura Mind Glow", elem_id="login_title")
gr.Markdown("Please log in or sign up to continue.")
with gr.Row():
email_input = gr.Textbox(label="Email", placeholder="Enter your email")
password_input = gr.Textbox(label="Password", type="password", placeholder="Enter your password")
with gr.Row():
login_btn = gr.Button("Login")
signup_btn = gr.Button("Sign Up")
auth_feedback = gr.Markdown()
# --- Main Application UI (Initially Hidden) ---
with gr.Column(visible=False) as main_view:
gr.Markdown("## Aura Mind Glow Dashboard")
with gr.Row():
logged_in_user_display = gr.Markdown()
logout_btn = gr.Button("Logout")
# Build the tabbed interface
interface_list = []
tab_titles = []
# Field Mode is always available after login
field_mode_ui = create_field_mode_ui(user_state)
interface_list.append(field_mode_ui)
tab_titles.append("Field Mode")
if check_internet_connection():
if ADK_RUNNER: interface_list.append(create_connected_mode_ui(user_state)); tab_titles.append("Connected Mode")
if STORY_LLM: interface_list.append(create_story_mode_ui()); tab_titles.append("Farmer's Story")
interface_list.append(create_document_analysis_ui()); tab_titles.append("Doc Analysis")
interface_list.append(create_settings_ui()); tab_titles.append("Settings")
interface_list.append(create_kb_management_ui()); tab_titles.append("Knowledge Base")
else:
gr.Markdown("**Warning:** No internet connection. Some features are disabled.")
main_tabs = gr.TabbedInterface(interface_list, tab_titles)
# --- Event Handlers ---
def on_login_success(user_data):
"""Called when login is successful. Hides login UI, shows main UI."""
if user_data:
return (
gr.update(visible=False), # Hide login_view
gr.update(visible=True), # Show main_view
f"Logged in as: **{user_data['email']}**", # Update user display
""
)
return gr.update(), gr.update(), gr.update(), "β Invalid email or password."
def on_logout():
"""Called on logout. Hides main UI, shows login UI."""
return None, gr.update(visible=True), gr.update(visible=False), ""
# Button and state change listeners
login_btn.click(
fn=login_user,
inputs=[email_input, password_input],
outputs=[user_state]
).then(
fn=on_login_success,
inputs=[user_state],
outputs=[login_view, main_view, logged_in_user_display, auth_feedback]
)
signup_btn.click(
fn=signup_user,
inputs=[email_input, password_input],
outputs=[auth_feedback]
)
logout_btn.click(
fn=on_logout,
inputs=[],
outputs=[user_state, login_view, main_view, logged_in_user_display]
)
demo.launch(share=True, debug=True, mcp_server=True) |