import transformers import gradio as gr import datasets from transformers import AutoFeatureExtractor, AutoModelForImageClassification dataset = datasets.load_dataset('beans') extractor = AutoFeatureExtractor.from_pretrained("saved_model_files") model = AutoModelForImageClassification.from_pretrained("saved_model_files") labels = dataset['train'].features['labels'].names def classify(im): features = feature_extractor(im, return_tensors='pt') with torch.no_grad(): logits = model(features["pixel_values"])[-1] probability = torch.nn.functional.softmax(logits, dim=-1) probs = probability[0].detach().numpy() confidences = {label: float(probs[i]) for i, label in enumerate(labels)} return confidences # Set gradio interface gr_interface = gr.Interface(classify, inputs='image', outputs='label', title='Bean Classification', description='Monitor your crops health in easier way') # Launch gradio gr_interface.launch()