import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # استفاده از مدل باز جایگزین model_name = "mistralai/Mistral-7B-Instruct-v0.2" # یا "google/gemma-7b" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.float16 ) def generate_response(prompt, max_new_tokens=512, temperature=0.7): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=max_new_tokens, temperature=temperature, do_sample=True ) return tokenizer.decode(outputs[0], skip_special_tokens=True) with gr.Blocks() as demo: gr.Markdown("# چت بات هوشمند") chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("پاک کردن") def respond(message, chat_history): response = generate_response(message) chat_history.append((message, response)) return "", chat_history msg.submit(respond, [msg, chatbot], [msg, chatbot]) clear.click(lambda: None, None, chatbot, queue=False) demo.launch()