Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,80 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
load_in_4bit=True,
|
8 |
-
bnb_4bit_compute_dtype=torch.float16,
|
9 |
-
bnb_4bit_quant_type="nf4",
|
10 |
-
bnb_4bit_use_double_quant=True,
|
11 |
-
)
|
12 |
|
13 |
-
# بارگذاری مدل با تنظیمات بهینهسازی
|
14 |
-
model_name = "meta-llama/Llama-3.1-8B-Instruct"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
model = AutoModelForCausalLM.from_pretrained(
|
17 |
model_name,
|
18 |
-
|
19 |
-
|
20 |
)
|
21 |
|
22 |
def generate_response(prompt, max_new_tokens=512, temperature=0.7):
|
23 |
-
"""
|
24 |
-
تولید پاسخ بر اساس ورودی کاربر
|
25 |
-
"""
|
26 |
-
# کدگذاری ورودی کاربر
|
27 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
28 |
-
|
29 |
-
# تولید پاسخ
|
30 |
outputs = model.generate(
|
31 |
**inputs,
|
32 |
max_new_tokens=max_new_tokens,
|
33 |
temperature=temperature,
|
34 |
-
do_sample=True
|
35 |
-
pad_token_id=tokenizer.eos_token_id
|
36 |
)
|
37 |
-
|
38 |
-
# تبدیل خروجی به متن
|
39 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
-
|
41 |
-
# حذف prompt از پاسخ
|
42 |
-
response = response[len(prompt):].strip()
|
43 |
-
|
44 |
-
return response
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
gr.
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
submit_btn = gr.Button("ارسال")
|
60 |
-
|
61 |
-
with gr.Column():
|
62 |
-
output_text = gr.Textbox(label="پاسخ مدل", lines=10, interactive=False)
|
63 |
-
|
64 |
-
# رویدادها
|
65 |
-
submit_btn.click(
|
66 |
-
fn=generate_response,
|
67 |
-
inputs=[user_input, max_tokens, temperature],
|
68 |
-
outputs=output_text
|
69 |
-
)
|
70 |
-
|
71 |
-
# امکان ارسال با Enter
|
72 |
-
user_input.submit(
|
73 |
-
fn=generate_response,
|
74 |
-
inputs=[user_input, max_tokens, temperature],
|
75 |
-
outputs=output_text
|
76 |
-
)
|
77 |
|
78 |
-
|
79 |
-
if __name__ == "__main__":
|
80 |
-
demo.launch(share=False)
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
|
5 |
+
# استفاده از مدل باز جایگزین
|
6 |
+
model_name = "mistralai/Mistral-7B-Instruct-v0.2" # یا "google/gemma-7b"
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForCausalLM.from_pretrained(
|
10 |
model_name,
|
11 |
+
device_map="auto",
|
12 |
+
torch_dtype=torch.float16
|
13 |
)
|
14 |
|
15 |
def generate_response(prompt, max_new_tokens=512, temperature=0.7):
|
|
|
|
|
|
|
|
|
16 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
|
17 |
outputs = model.generate(
|
18 |
**inputs,
|
19 |
max_new_tokens=max_new_tokens,
|
20 |
temperature=temperature,
|
21 |
+
do_sample=True
|
|
|
22 |
)
|
23 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
with gr.Blocks() as demo:
|
26 |
+
gr.Markdown("# چت بات هوشمند")
|
27 |
+
chatbot = gr.Chatbot()
|
28 |
+
msg = gr.Textbox()
|
29 |
+
clear = gr.Button("پاک کردن")
|
30 |
+
|
31 |
+
def respond(message, chat_history):
|
32 |
+
response = generate_response(message)
|
33 |
+
chat_history.append((message, response))
|
34 |
+
return "", chat_history
|
35 |
+
|
36 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
37 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
demo.launch()
|
|
|
|