import torch from diffusers import DiffusionPipeline import os hf_token = os.environ["HF_TOKEN"] # Model and inference parameters model_id = "black-forest-labs/FLUX.1-schnell" prompt = "A cat holding a sign that says hello world" image_width = 768 image_height = 1360 num_inference_steps = 4 # Hardware-specific optimizations for CPU only device = "cpu" torch_dtype = torch.float32 # Use float32 for CPU # Load the pipeline # FLUX models do not use guidance_scale and benefit from specific step counts pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype) pipe = pipe.to(device) # Enable attention slicing for CPU memory optimization, especially for larger images pipe.enable_attention_slicing() # Run inference # IMPORTANT: guidance_scale is not used for FLUX models image = pipe( prompt=prompt, width=image_width, height=image_height, num_inference_steps=num_inference_steps ).images[0] # Save or display the image (example) # image.save("optimized_flux_output.png") # print("Image generated and saved.")