# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import math from typing import Tuple, Type import torch from torch import Tensor, nn from ultralytics.nn.modules import MLPBlock class TwoWayTransformer(nn.Module): """ A Two-Way Transformer module for simultaneous attention to image and query points. This class implements a specialized transformer decoder that attends to an input image using queries with supplied positional embeddings. It's useful for tasks like object detection, image segmentation, and point cloud processing. Attributes: depth (int): Number of layers in the transformer. embedding_dim (int): Channel dimension for input embeddings. num_heads (int): Number of heads for multihead attention. mlp_dim (int): Internal channel dimension for the MLP block. layers (nn.ModuleList): List of TwoWayAttentionBlock layers composing the transformer. final_attn_token_to_image (Attention): Final attention layer from queries to image. norm_final_attn (nn.LayerNorm): Layer normalization applied to final queries. Methods: forward: Processes image and point embeddings through the transformer. Examples: >>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048) >>> image_embedding = torch.randn(1, 256, 32, 32) >>> image_pe = torch.randn(1, 256, 32, 32) >>> point_embedding = torch.randn(1, 100, 256) >>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding) >>> print(output_queries.shape, output_image.shape) """ def __init__( self, depth: int, embedding_dim: int, num_heads: int, mlp_dim: int, activation: Type[nn.Module] = nn.ReLU, attention_downsample_rate: int = 2, ) -> None: """ Initialize a Two-Way Transformer for simultaneous attention to image and query points. Args: depth (int): Number of layers in the transformer. embedding_dim (int): Channel dimension for input embeddings. num_heads (int): Number of heads for multihead attention. Must divide embedding_dim. mlp_dim (int): Internal channel dimension for the MLP block. activation (Type[nn.Module]): Activation function to use in the MLP block. attention_downsample_rate (int): Downsampling rate for attention mechanism. Attributes: depth (int): Number of layers in the transformer. embedding_dim (int): Channel dimension for input embeddings. num_heads (int): Number of heads for multihead attention. mlp_dim (int): Internal channel dimension for the MLP block. layers (nn.ModuleList): List of TwoWayAttentionBlock layers. final_attn_token_to_image (Attention): Final attention layer from queries to image. norm_final_attn (nn.LayerNorm): Layer normalization applied to final queries. Examples: >>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048) >>> image_embedding = torch.randn(1, 256, 32, 32) >>> image_pe = torch.randn(1, 256, 32, 32) >>> point_embedding = torch.randn(1, 100, 256) >>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding) >>> print(output_queries.shape, output_image.shape) """ super().__init__() self.depth = depth self.embedding_dim = embedding_dim self.num_heads = num_heads self.mlp_dim = mlp_dim self.layers = nn.ModuleList() for i in range(depth): self.layers.append( TwoWayAttentionBlock( embedding_dim=embedding_dim, num_heads=num_heads, mlp_dim=mlp_dim, activation=activation, attention_downsample_rate=attention_downsample_rate, skip_first_layer_pe=(i == 0), ) ) self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) self.norm_final_attn = nn.LayerNorm(embedding_dim) def forward( self, image_embedding: Tensor, image_pe: Tensor, point_embedding: Tensor, ) -> Tuple[Tensor, Tensor]: """ Processes image and point embeddings through the Two-Way Transformer. Args: image_embedding (torch.Tensor): Image to attend to, with shape (B, embedding_dim, H, W). image_pe (torch.Tensor): Positional encoding to add to the image, with same shape as image_embedding. point_embedding (torch.Tensor): Embedding to add to query points, with shape (B, N_points, embedding_dim). Returns: (Tuple[torch.Tensor, torch.Tensor]): Processed point_embedding and image_embedding. Examples: >>> transformer = TwoWayTransformer(depth=6, embedding_dim=256, num_heads=8, mlp_dim=2048) >>> image_embedding = torch.randn(1, 256, 32, 32) >>> image_pe = torch.randn(1, 256, 32, 32) >>> point_embedding = torch.randn(1, 100, 256) >>> output_queries, output_image = transformer(image_embedding, image_pe, point_embedding) >>> print(output_queries.shape, output_image.shape) """ # BxCxHxW -> BxHWxC == B x N_image_tokens x C image_embedding = image_embedding.flatten(2).permute(0, 2, 1) image_pe = image_pe.flatten(2).permute(0, 2, 1) # Prepare queries queries = point_embedding keys = image_embedding # Apply transformer blocks and final layernorm for layer in self.layers: queries, keys = layer( queries=queries, keys=keys, query_pe=point_embedding, key_pe=image_pe, ) # Apply the final attention layer from the points to the image q = queries + point_embedding k = keys + image_pe attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) queries = queries + attn_out queries = self.norm_final_attn(queries) return queries, keys class TwoWayAttentionBlock(nn.Module): """ A two-way attention block for simultaneous attention to image and query points. This class implements a specialized transformer block with four main layers: self-attention on sparse inputs, cross-attention of sparse inputs to dense inputs, MLP block on sparse inputs, and cross-attention of dense inputs to sparse inputs. Attributes: self_attn (Attention): Self-attention layer for queries. norm1 (nn.LayerNorm): Layer normalization after self-attention. cross_attn_token_to_image (Attention): Cross-attention layer from queries to keys. norm2 (nn.LayerNorm): Layer normalization after token-to-image attention. mlp (MLPBlock): MLP block for transforming query embeddings. norm3 (nn.LayerNorm): Layer normalization after MLP block. norm4 (nn.LayerNorm): Layer normalization after image-to-token attention. cross_attn_image_to_token (Attention): Cross-attention layer from keys to queries. skip_first_layer_pe (bool): Whether to skip positional encoding in the first layer. Methods: forward: Applies self-attention and cross-attention to queries and keys. Examples: >>> embedding_dim, num_heads = 256, 8 >>> block = TwoWayAttentionBlock(embedding_dim, num_heads) >>> queries = torch.randn(1, 100, embedding_dim) >>> keys = torch.randn(1, 1000, embedding_dim) >>> query_pe = torch.randn(1, 100, embedding_dim) >>> key_pe = torch.randn(1, 1000, embedding_dim) >>> processed_queries, processed_keys = block(queries, keys, query_pe, key_pe) """ def __init__( self, embedding_dim: int, num_heads: int, mlp_dim: int = 2048, activation: Type[nn.Module] = nn.ReLU, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False, ) -> None: """ Initializes a TwoWayAttentionBlock for simultaneous attention to image and query points. This block implements a specialized transformer layer with four main components: self-attention on sparse inputs, cross-attention of sparse inputs to dense inputs, MLP block on sparse inputs, and cross-attention of dense inputs to sparse inputs. Args: embedding_dim (int): Channel dimension of the embeddings. num_heads (int): Number of attention heads in the attention layers. mlp_dim (int): Hidden dimension of the MLP block. activation (Type[nn.Module]): Activation function for the MLP block. attention_downsample_rate (int): Downsampling rate for the attention mechanism. skip_first_layer_pe (bool): Whether to skip positional encoding in the first layer. Examples: >>> embedding_dim, num_heads = 256, 8 >>> block = TwoWayAttentionBlock(embedding_dim, num_heads) >>> queries = torch.randn(1, 100, embedding_dim) >>> keys = torch.randn(1, 1000, embedding_dim) >>> query_pe = torch.randn(1, 100, embedding_dim) >>> key_pe = torch.randn(1, 1000, embedding_dim) >>> processed_queries, processed_keys = block(queries, keys, query_pe, key_pe) """ super().__init__() self.self_attn = Attention(embedding_dim, num_heads) self.norm1 = nn.LayerNorm(embedding_dim) self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) self.norm2 = nn.LayerNorm(embedding_dim) self.mlp = MLPBlock(embedding_dim, mlp_dim, activation) self.norm3 = nn.LayerNorm(embedding_dim) self.norm4 = nn.LayerNorm(embedding_dim) self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) self.skip_first_layer_pe = skip_first_layer_pe def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]: """Applies two-way attention to process query and key embeddings in a transformer block.""" # Self attention block if self.skip_first_layer_pe: queries = self.self_attn(q=queries, k=queries, v=queries) else: q = queries + query_pe attn_out = self.self_attn(q=q, k=q, v=queries) queries = queries + attn_out queries = self.norm1(queries) # Cross attention block, tokens attending to image embedding q = queries + query_pe k = keys + key_pe attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) queries = queries + attn_out queries = self.norm2(queries) # MLP block mlp_out = self.mlp(queries) queries = queries + mlp_out queries = self.norm3(queries) # Cross attention block, image embedding attending to tokens q = queries + query_pe k = keys + key_pe attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) keys = keys + attn_out keys = self.norm4(keys) return queries, keys class Attention(nn.Module): """ An attention layer with downscaling capability for embedding size after projection. This class implements a multi-head attention mechanism with the option to downsample the internal dimension of queries, keys, and values. Attributes: embedding_dim (int): Dimensionality of input embeddings. kv_in_dim (int): Dimensionality of key and value inputs. internal_dim (int): Internal dimension after downsampling. num_heads (int): Number of attention heads. q_proj (nn.Linear): Linear projection for queries. k_proj (nn.Linear): Linear projection for keys. v_proj (nn.Linear): Linear projection for values. out_proj (nn.Linear): Linear projection for output. Methods: _separate_heads: Separates input tensor into attention heads. _recombine_heads: Recombines separated attention heads. forward: Computes attention output for given query, key, and value tensors. Examples: >>> attn = Attention(embedding_dim=256, num_heads=8, downsample_rate=2) >>> q = torch.randn(1, 100, 256) >>> k = v = torch.randn(1, 50, 256) >>> output = attn(q, k, v) >>> print(output.shape) torch.Size([1, 100, 256]) """ def __init__( self, embedding_dim: int, num_heads: int, downsample_rate: int = 1, kv_in_dim: int = None, ) -> None: """ Initializes the Attention module with specified dimensions and settings. This class implements a multi-head attention mechanism with optional downsampling of the internal dimension for queries, keys, and values. Args: embedding_dim (int): Dimensionality of input embeddings. num_heads (int): Number of attention heads. downsample_rate (int): Factor by which internal dimensions are downsampled. Defaults to 1. kv_in_dim (int | None): Dimensionality of key and value inputs. If None, uses embedding_dim. Raises: AssertionError: If num_heads does not evenly divide the internal dim (embedding_dim / downsample_rate). Examples: >>> attn = Attention(embedding_dim=256, num_heads=8, downsample_rate=2) >>> q = torch.randn(1, 100, 256) >>> k = v = torch.randn(1, 50, 256) >>> output = attn(q, k, v) >>> print(output.shape) torch.Size([1, 100, 256]) """ super().__init__() self.embedding_dim = embedding_dim self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim self.internal_dim = embedding_dim // downsample_rate self.num_heads = num_heads assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim." self.q_proj = nn.Linear(embedding_dim, self.internal_dim) self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim) self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim) self.out_proj = nn.Linear(self.internal_dim, embedding_dim) @staticmethod def _separate_heads(x: Tensor, num_heads: int) -> Tensor: """Separates the input tensor into the specified number of attention heads.""" b, n, c = x.shape x = x.reshape(b, n, num_heads, c // num_heads) return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head @staticmethod def _recombine_heads(x: Tensor) -> Tensor: """Recombines separated attention heads into a single tensor.""" b, n_heads, n_tokens, c_per_head = x.shape x = x.transpose(1, 2) return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: """Applies multi-head attention to query, key, and value tensors with optional downsampling.""" # Input projections q = self.q_proj(q) k = self.k_proj(k) v = self.v_proj(v) # Separate into heads q = self._separate_heads(q, self.num_heads) k = self._separate_heads(k, self.num_heads) v = self._separate_heads(v, self.num_heads) # Attention _, _, _, c_per_head = q.shape attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens attn = attn / math.sqrt(c_per_head) attn = torch.softmax(attn, dim=-1) # Get output out = attn @ v out = self._recombine_heads(out) return self.out_proj(out)