File size: 9,750 Bytes
1999a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

import copy
from typing import Optional

import torch
from torch import Tensor, nn

from .blocks import RoPEAttention


class MemoryAttentionLayer(nn.Module):
    """
    Implements a memory attention layer with self-attention and cross-attention mechanisms for neural networks.

    This class combines self-attention, cross-attention, and feedforward components to process input tensors and
    generate memory-based attention outputs.

    Attributes:
        d_model (int): Dimensionality of the model.
        dim_feedforward (int): Dimensionality of the feedforward network.
        dropout_value (float): Dropout rate for regularization.
        self_attn (RoPEAttention): Self-attention mechanism using RoPE (Rotary Position Embedding).
        cross_attn_image (RoPEAttention): Cross-attention mechanism for image processing.
        linear1 (nn.Linear): First linear layer of the feedforward network.
        linear2 (nn.Linear): Second linear layer of the feedforward network.
        norm1 (nn.LayerNorm): Layer normalization for self-attention output.
        norm2 (nn.LayerNorm): Layer normalization for cross-attention output.
        norm3 (nn.LayerNorm): Layer normalization for feedforward network output.
        dropout1 (nn.Dropout): Dropout layer after self-attention.
        dropout2 (nn.Dropout): Dropout layer after cross-attention.
        dropout3 (nn.Dropout): Dropout layer after feedforward network.
        activation (nn.ReLU): Activation function for the feedforward network.
        pos_enc_at_attn (bool): Flag to add positional encoding at attention.
        pos_enc_at_cross_attn_queries (bool): Flag to add positional encoding to cross-attention queries.
        pos_enc_at_cross_attn_keys (bool): Flag to add positional encoding to cross-attention keys.

    Methods:
        forward: Performs the full memory attention operation on input tensors.
        _forward_sa: Performs self-attention on input tensor.
        _forward_ca: Performs cross-attention between target and memory tensors.

    Examples:
        >>> layer = MemoryAttentionLayer(d_model=256, dim_feedforward=2048, dropout=0.1)
        >>> tgt = torch.randn(1, 100, 256)
        >>> memory = torch.randn(1, 100, 64)
        >>> pos = torch.randn(1, 100, 256)
        >>> query_pos = torch.randn(1, 100, 256)
        >>> output = layer(tgt, memory, pos, query_pos)
        >>> print(output.shape)
        torch.Size([1, 100, 256])
    """

    def __init__(
        self,
        d_model: int = 256,
        dim_feedforward: int = 2048,
        dropout: float = 0.1,
        pos_enc_at_attn: bool = False,
        pos_enc_at_cross_attn_keys: bool = True,
        pos_enc_at_cross_attn_queries: bool = False,
    ):
        """Initializes a memory attention layer with self-attention, cross-attention, and feedforward components."""
        super().__init__()
        self.d_model = d_model
        self.dim_feedforward = dim_feedforward
        self.dropout_value = dropout
        self.self_attn = RoPEAttention(embedding_dim=256, num_heads=1, downsample_rate=1)
        self.cross_attn_image = RoPEAttention(
            rope_k_repeat=True,
            embedding_dim=256,
            num_heads=1,
            downsample_rate=1,
            kv_in_dim=64,
        )

        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.activation = nn.ReLU()

        # Where to add pos enc
        self.pos_enc_at_attn = pos_enc_at_attn
        self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
        self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys

    def _forward_sa(self, tgt, query_pos):
        """Performs self-attention on input tensor using positional encoding and RoPE attention mechanism."""
        tgt2 = self.norm1(tgt)
        q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
        tgt2 = self.self_attn(q, k, v=tgt2)
        tgt = tgt + self.dropout1(tgt2)
        return tgt

    def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
        """Performs cross-attention between target and memory tensors using RoPEAttention mechanism."""
        kwds = {}
        if num_k_exclude_rope > 0:
            assert isinstance(self.cross_attn_image, RoPEAttention)
            kwds = {"num_k_exclude_rope": num_k_exclude_rope}

        # Cross-Attention
        tgt2 = self.norm2(tgt)
        tgt2 = self.cross_attn_image(
            q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
            k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
            v=memory,
            **kwds,
        )
        tgt = tgt + self.dropout2(tgt2)
        return tgt

    def forward(
        self,
        tgt,
        memory,
        pos: Optional[Tensor] = None,
        query_pos: Optional[Tensor] = None,
        num_k_exclude_rope: int = 0,
    ) -> torch.Tensor:
        """Processes input tensors using self-attention, cross-attention, and MLP for memory-based attention."""
        tgt = self._forward_sa(tgt, query_pos)
        tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
        # MLP
        tgt2 = self.norm3(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
        tgt = tgt + self.dropout3(tgt2)
        return tgt


class MemoryAttention(nn.Module):
    """
    Memory attention module for processing sequential data with self and cross-attention mechanisms.

    This class implements a multi-layer attention mechanism that combines self-attention and cross-attention
    for processing sequential data, particularly useful in transformer-like architectures.

    Attributes:
        d_model (int): The dimension of the model's hidden state.
        layers (nn.ModuleList): A list of MemoryAttentionLayer modules.
        num_layers (int): The number of attention layers.
        norm (nn.LayerNorm): Layer normalization applied to the output.
        pos_enc_at_input (bool): Whether to apply positional encoding at the input.
        batch_first (bool): Whether the input tensors are in batch-first format.

    Methods:
        forward: Processes input tensors through the attention layers.

    Examples:
        >>> d_model = 256
        >>> layer = MemoryAttentionLayer(d_model)
        >>> attention = MemoryAttention(d_model, pos_enc_at_input=True, layer=layer, num_layers=3)
        >>> curr = torch.randn(10, 32, d_model)  # (seq_len, batch_size, d_model)
        >>> memory = torch.randn(20, 32, d_model)  # (mem_len, batch_size, d_model)
        >>> curr_pos = torch.randn(10, 32, d_model)
        >>> memory_pos = torch.randn(20, 32, d_model)
        >>> output = attention(curr, memory, curr_pos, memory_pos)
        >>> print(output.shape)
        torch.Size([10, 32, 256])
    """

    def __init__(
        self,
        d_model: int,
        pos_enc_at_input: bool,
        layer: nn.Module,
        num_layers: int,
        batch_first: bool = True,  # Do layers expect batch first input?
    ):
        """Initializes MemoryAttention module with layers and normalization for attention processing."""
        super().__init__()
        self.d_model = d_model
        self.layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(num_layers)])
        self.num_layers = num_layers
        self.norm = nn.LayerNorm(d_model)
        self.pos_enc_at_input = pos_enc_at_input
        self.batch_first = batch_first

    def forward(
        self,
        curr: torch.Tensor,  # self-attention inputs
        memory: torch.Tensor,  # cross-attention inputs
        curr_pos: Optional[Tensor] = None,  # pos_enc for self-attention inputs
        memory_pos: Optional[Tensor] = None,  # pos_enc for cross-attention inputs
        num_obj_ptr_tokens: int = 0,  # number of object pointer *tokens*
    ):
        """Processes input tensors through multiple attention layers, applying self and cross-attention mechanisms."""
        if isinstance(curr, list):
            assert isinstance(curr_pos, list)
            assert len(curr) == len(curr_pos) == 1
            curr, curr_pos = (
                curr[0],
                curr_pos[0],
            )

        assert curr.shape[1] == memory.shape[1], "Batch size must be the same for curr and memory"

        output = curr
        if self.pos_enc_at_input and curr_pos is not None:
            output = output + 0.1 * curr_pos

        if self.batch_first:
            # Convert to batch first
            output = output.transpose(0, 1)
            curr_pos = curr_pos.transpose(0, 1)
            memory = memory.transpose(0, 1)
            memory_pos = memory_pos.transpose(0, 1)

        for layer in self.layers:
            kwds = {}
            if isinstance(layer.cross_attn_image, RoPEAttention):
                kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}

            output = layer(
                tgt=output,
                memory=memory,
                pos=memory_pos,
                query_pos=curr_pos,
                **kwds,
            )
        normed_output = self.norm(output)

        if self.batch_first:
            # Convert back to seq first
            normed_output = normed_output.transpose(0, 1)
            curr_pos = curr_pos.transpose(0, 1)

        return normed_output