Spaces:
Running
Running
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
import sys | |
from unittest import mock | |
from tests import MODEL | |
from ultralytics import YOLO | |
from ultralytics.cfg import get_cfg | |
from ultralytics.engine.exporter import Exporter | |
from ultralytics.models.yolo import classify, detect, segment | |
from ultralytics.utils import ASSETS, DEFAULT_CFG, WEIGHTS_DIR | |
def test_func(*args): # noqa | |
"""Test function callback for evaluating YOLO model performance metrics.""" | |
print("callback test passed") | |
def test_export(): | |
"""Tests the model exporting function by adding a callback and asserting its execution.""" | |
exporter = Exporter() | |
exporter.add_callback("on_export_start", test_func) | |
assert test_func in exporter.callbacks["on_export_start"], "callback test failed" | |
f = exporter(model=YOLO("yolo11n.yaml").model) | |
YOLO(f)(ASSETS) # exported model inference | |
def test_detect(): | |
"""Test YOLO object detection training, validation, and prediction functionality.""" | |
overrides = {"data": "coco8.yaml", "model": "yolo11n.yaml", "imgsz": 32, "epochs": 1, "save": False} | |
cfg = get_cfg(DEFAULT_CFG) | |
cfg.data = "coco8.yaml" | |
cfg.imgsz = 32 | |
# Trainer | |
trainer = detect.DetectionTrainer(overrides=overrides) | |
trainer.add_callback("on_train_start", test_func) | |
assert test_func in trainer.callbacks["on_train_start"], "callback test failed" | |
trainer.train() | |
# Validator | |
val = detect.DetectionValidator(args=cfg) | |
val.add_callback("on_val_start", test_func) | |
assert test_func in val.callbacks["on_val_start"], "callback test failed" | |
val(model=trainer.best) # validate best.pt | |
# Predictor | |
pred = detect.DetectionPredictor(overrides={"imgsz": [64, 64]}) | |
pred.add_callback("on_predict_start", test_func) | |
assert test_func in pred.callbacks["on_predict_start"], "callback test failed" | |
# Confirm there is no issue with sys.argv being empty. | |
with mock.patch.object(sys, "argv", []): | |
result = pred(source=ASSETS, model=MODEL) | |
assert len(result), "predictor test failed" | |
overrides["resume"] = trainer.last | |
trainer = detect.DetectionTrainer(overrides=overrides) | |
try: | |
trainer.train() | |
except Exception as e: | |
print(f"Expected exception caught: {e}") | |
return | |
Exception("Resume test failed!") | |
def test_segment(): | |
"""Tests image segmentation training, validation, and prediction pipelines using YOLO models.""" | |
overrides = {"data": "coco8-seg.yaml", "model": "yolo11n-seg.yaml", "imgsz": 32, "epochs": 1, "save": False} | |
cfg = get_cfg(DEFAULT_CFG) | |
cfg.data = "coco8-seg.yaml" | |
cfg.imgsz = 32 | |
# YOLO(CFG_SEG).train(**overrides) # works | |
# Trainer | |
trainer = segment.SegmentationTrainer(overrides=overrides) | |
trainer.add_callback("on_train_start", test_func) | |
assert test_func in trainer.callbacks["on_train_start"], "callback test failed" | |
trainer.train() | |
# Validator | |
val = segment.SegmentationValidator(args=cfg) | |
val.add_callback("on_val_start", test_func) | |
assert test_func in val.callbacks["on_val_start"], "callback test failed" | |
val(model=trainer.best) # validate best.pt | |
# Predictor | |
pred = segment.SegmentationPredictor(overrides={"imgsz": [64, 64]}) | |
pred.add_callback("on_predict_start", test_func) | |
assert test_func in pred.callbacks["on_predict_start"], "callback test failed" | |
result = pred(source=ASSETS, model=WEIGHTS_DIR / "yolo11n-seg.pt") | |
assert len(result), "predictor test failed" | |
# Test resume | |
overrides["resume"] = trainer.last | |
trainer = segment.SegmentationTrainer(overrides=overrides) | |
try: | |
trainer.train() | |
except Exception as e: | |
print(f"Expected exception caught: {e}") | |
return | |
Exception("Resume test failed!") | |
def test_classify(): | |
"""Test image classification including training, validation, and prediction phases.""" | |
overrides = {"data": "imagenet10", "model": "yolo11n-cls.yaml", "imgsz": 32, "epochs": 1, "save": False} | |
cfg = get_cfg(DEFAULT_CFG) | |
cfg.data = "imagenet10" | |
cfg.imgsz = 32 | |
# YOLO(CFG_SEG).train(**overrides) # works | |
# Trainer | |
trainer = classify.ClassificationTrainer(overrides=overrides) | |
trainer.add_callback("on_train_start", test_func) | |
assert test_func in trainer.callbacks["on_train_start"], "callback test failed" | |
trainer.train() | |
# Validator | |
val = classify.ClassificationValidator(args=cfg) | |
val.add_callback("on_val_start", test_func) | |
assert test_func in val.callbacks["on_val_start"], "callback test failed" | |
val(model=trainer.best) | |
# Predictor | |
pred = classify.ClassificationPredictor(overrides={"imgsz": [64, 64]}) | |
pred.add_callback("on_predict_start", test_func) | |
assert test_func in pred.callbacks["on_predict_start"], "callback test failed" | |
result = pred(source=ASSETS, model=trainer.best) | |
assert len(result), "predictor test failed" | |