sunsmarterjieleaf's picture
Upload 315 files
1999a98 verified
raw
history blame
7.51 kB
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import torch
from PIL import Image
from ultralytics.models.yolo.segment import SegmentationPredictor
from ultralytics.utils import DEFAULT_CFG, checks
from ultralytics.utils.metrics import box_iou
from ultralytics.utils.ops import scale_masks
from .utils import adjust_bboxes_to_image_border
class FastSAMPredictor(SegmentationPredictor):
"""
FastSAMPredictor is specialized for fast SAM (Segment Anything Model) segmentation prediction tasks in Ultralytics
YOLO framework.
This class extends the SegmentationPredictor, customizing the prediction pipeline specifically for fast SAM. It
adjusts post-processing steps to incorporate mask prediction and non-max suppression while optimizing for single-
class segmentation.
"""
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
"""Initializes a FastSAMPredictor for fast SAM segmentation tasks in Ultralytics YOLO framework."""
super().__init__(cfg, overrides, _callbacks)
self.prompts = {}
def postprocess(self, preds, img, orig_imgs):
"""Applies box postprocess for FastSAM predictions."""
bboxes = self.prompts.pop("bboxes", None)
points = self.prompts.pop("points", None)
labels = self.prompts.pop("labels", None)
texts = self.prompts.pop("texts", None)
results = super().postprocess(preds, img, orig_imgs)
for result in results:
full_box = torch.tensor(
[0, 0, result.orig_shape[1], result.orig_shape[0]], device=preds[0].device, dtype=torch.float32
)
boxes = adjust_bboxes_to_image_border(result.boxes.xyxy, result.orig_shape)
idx = torch.nonzero(box_iou(full_box[None], boxes) > 0.9).flatten()
if idx.numel() != 0:
result.boxes.xyxy[idx] = full_box
return self.prompt(results, bboxes=bboxes, points=points, labels=labels, texts=texts)
def prompt(self, results, bboxes=None, points=None, labels=None, texts=None):
"""
Internal function for image segmentation inference based on cues like bounding boxes, points, and masks.
Leverages SAM's specialized architecture for prompt-based, real-time segmentation.
Args:
results (Results | List[Results]): The original inference results from FastSAM models without any prompts.
bboxes (np.ndarray | List, optional): Bounding boxes with shape (N, 4), in XYXY format.
points (np.ndarray | List, optional): Points indicating object locations with shape (N, 2), in pixels.
labels (np.ndarray | List, optional): Labels for point prompts, shape (N, ). 1 = foreground, 0 = background.
texts (str | List[str], optional): Textual prompts, a list contains string objects.
Returns:
(List[Results]): The output results determined by prompts.
"""
if bboxes is None and points is None and texts is None:
return results
prompt_results = []
if not isinstance(results, list):
results = [results]
for result in results:
if len(result) == 0:
prompt_results.append(result)
continue
masks = result.masks.data
if masks.shape[1:] != result.orig_shape:
masks = scale_masks(masks[None], result.orig_shape)[0]
# bboxes prompt
idx = torch.zeros(len(result), dtype=torch.bool, device=self.device)
if bboxes is not None:
bboxes = torch.as_tensor(bboxes, dtype=torch.int32, device=self.device)
bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
bbox_areas = (bboxes[:, 3] - bboxes[:, 1]) * (bboxes[:, 2] - bboxes[:, 0])
mask_areas = torch.stack([masks[:, b[1] : b[3], b[0] : b[2]].sum(dim=(1, 2)) for b in bboxes])
full_mask_areas = torch.sum(masks, dim=(1, 2))
union = bbox_areas[:, None] + full_mask_areas - mask_areas
idx[torch.argmax(mask_areas / union, dim=1)] = True
if points is not None:
points = torch.as_tensor(points, dtype=torch.int32, device=self.device)
points = points[None] if points.ndim == 1 else points
if labels is None:
labels = torch.ones(points.shape[0])
labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
assert len(labels) == len(points), (
f"Excepted `labels` got same size as `point`, but got {len(labels)} and {len(points)}"
)
point_idx = (
torch.ones(len(result), dtype=torch.bool, device=self.device)
if labels.sum() == 0 # all negative points
else torch.zeros(len(result), dtype=torch.bool, device=self.device)
)
for point, label in zip(points, labels):
point_idx[torch.nonzero(masks[:, point[1], point[0]], as_tuple=True)[0]] = bool(label)
idx |= point_idx
if texts is not None:
if isinstance(texts, str):
texts = [texts]
crop_ims, filter_idx = [], []
for i, b in enumerate(result.boxes.xyxy.tolist()):
x1, y1, x2, y2 = (int(x) for x in b)
if masks[i].sum() <= 100:
filter_idx.append(i)
continue
crop_ims.append(Image.fromarray(result.orig_img[y1:y2, x1:x2, ::-1]))
similarity = self._clip_inference(crop_ims, texts)
text_idx = torch.argmax(similarity, dim=-1) # (M, )
if len(filter_idx):
text_idx += (torch.tensor(filter_idx, device=self.device)[None] <= int(text_idx)).sum(0)
idx[text_idx] = True
prompt_results.append(result[idx])
return prompt_results
def _clip_inference(self, images, texts):
"""
CLIP Inference process.
Args:
images (List[PIL.Image]): A list of source images and each of them should be PIL.Image type with RGB channel order.
texts (List[str]): A list of prompt texts and each of them should be string object.
Returns:
(torch.Tensor): The similarity between given images and texts.
"""
try:
import clip
except ImportError:
checks.check_requirements("git+https://github.com/ultralytics/CLIP.git")
import clip
if (not hasattr(self, "clip_model")) or (not hasattr(self, "clip_preprocess")):
self.clip_model, self.clip_preprocess = clip.load("ViT-B/32", device=self.device)
images = torch.stack([self.clip_preprocess(image).to(self.device) for image in images])
tokenized_text = clip.tokenize(texts).to(self.device)
image_features = self.clip_model.encode_image(images)
text_features = self.clip_model.encode_text(tokenized_text)
image_features /= image_features.norm(dim=-1, keepdim=True) # (N, 512)
text_features /= text_features.norm(dim=-1, keepdim=True) # (M, 512)
return (image_features * text_features[:, None]).sum(-1) # (M, N)
def set_prompts(self, prompts):
"""Set prompts in advance."""
self.prompts = prompts