Spaces:
Running
Running
# Ultralytics π AGPL-3.0 License - https://ultralytics.com/license | |
import argparse | |
import cv2 | |
import numpy as np | |
import onnxruntime as ort | |
import torch | |
from ultralytics.utils import ASSETS, yaml_load | |
from ultralytics.utils.checks import check_requirements, check_yaml | |
class RTDETR: | |
"""RTDETR object detection model class for handling inference and visualization.""" | |
def __init__(self, model_path, img_path, conf_thres=0.5, iou_thres=0.5): | |
""" | |
Initializes the RTDETR object with the specified parameters. | |
Args: | |
model_path: Path to the ONNX model file. | |
img_path: Path to the input image. | |
conf_thres: Confidence threshold for object detection. | |
iou_thres: IoU threshold for non-maximum suppression | |
""" | |
self.model_path = model_path | |
self.img_path = img_path | |
self.conf_thres = conf_thres | |
self.iou_thres = iou_thres | |
# Set up the ONNX runtime session with CUDA and CPU execution providers | |
self.session = ort.InferenceSession(model_path, providers=["CUDAExecutionProvider", "CPUExecutionProvider"]) | |
self.model_input = self.session.get_inputs() | |
self.input_width = self.model_input[0].shape[2] | |
self.input_height = self.model_input[0].shape[3] | |
# Load class names from the COCO dataset YAML file | |
self.classes = yaml_load(check_yaml("coco8.yaml"))["names"] | |
# Generate a color palette for drawing bounding boxes | |
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) | |
def draw_detections(self, box, score, class_id): | |
""" | |
Draws bounding boxes and labels on the input image based on the detected objects. | |
Args: | |
box: Detected bounding box. | |
score: Corresponding detection score. | |
class_id: Class ID for the detected object. | |
Returns: | |
None | |
""" | |
# Extract the coordinates of the bounding box | |
x1, y1, x2, y2 = box | |
# Retrieve the color for the class ID | |
color = self.color_palette[class_id] | |
# Draw the bounding box on the image | |
cv2.rectangle(self.img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) | |
# Create the label text with class name and score | |
label = f"{self.classes[class_id]}: {score:.2f}" | |
# Calculate the dimensions of the label text | |
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) | |
# Calculate the position of the label text | |
label_x = x1 | |
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 | |
# Draw a filled rectangle as the background for the label text | |
cv2.rectangle( | |
self.img, | |
(int(label_x), int(label_y - label_height)), | |
(int(label_x + label_width), int(label_y + label_height)), | |
color, | |
cv2.FILLED, | |
) | |
# Draw the label text on the image | |
cv2.putText( | |
self.img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA | |
) | |
def preprocess(self): | |
""" | |
Preprocesses the input image before performing inference. | |
Returns: | |
image_data: Preprocessed image data ready for inference. | |
""" | |
# Read the input image using OpenCV | |
self.img = cv2.imread(self.img_path) | |
# Get the height and width of the input image | |
self.img_height, self.img_width = self.img.shape[:2] | |
# Convert the image color space from BGR to RGB | |
img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB) | |
# Resize the image to match the input shape | |
img = cv2.resize(img, (self.input_width, self.input_height)) | |
# Normalize the image data by dividing it by 255.0 | |
image_data = np.array(img) / 255.0 | |
# Transpose the image to have the channel dimension as the first dimension | |
image_data = np.transpose(image_data, (2, 0, 1)) # Channel first | |
# Expand the dimensions of the image data to match the expected input shape | |
image_data = np.expand_dims(image_data, axis=0).astype(np.float32) | |
# Return the preprocessed image data | |
return image_data | |
def bbox_cxcywh_to_xyxy(self, boxes): | |
""" | |
Converts bounding boxes from (center x, center y, width, height) format to (x_min, y_min, x_max, y_max) format. | |
Args: | |
boxes (numpy.ndarray): An array of shape (N, 4) where each row represents | |
a bounding box in (cx, cy, w, h) format. | |
Returns: | |
numpy.ndarray: An array of shape (N, 4) where each row represents | |
a bounding box in (x_min, y_min, x_max, y_max) format. | |
""" | |
# Calculate half width and half height of the bounding boxes | |
half_width = boxes[:, 2] / 2 | |
half_height = boxes[:, 3] / 2 | |
# Calculate the coordinates of the bounding boxes | |
x_min = boxes[:, 0] - half_width | |
y_min = boxes[:, 1] - half_height | |
x_max = boxes[:, 0] + half_width | |
y_max = boxes[:, 1] + half_height | |
# Return the bounding boxes in (x_min, y_min, x_max, y_max) format | |
return np.column_stack((x_min, y_min, x_max, y_max)) | |
def postprocess(self, model_output): | |
""" | |
Postprocesses the model output to extract detections and draw them on the input image. | |
Args: | |
model_output: Output of the model inference. | |
Returns: | |
np.array: Annotated image with detections. | |
""" | |
# Squeeze the model output to remove unnecessary dimensions | |
outputs = np.squeeze(model_output[0]) | |
# Extract bounding boxes and scores from the model output | |
boxes = outputs[:, :4] | |
scores = outputs[:, 4:] | |
# Get the class labels and scores for each detection | |
labels = np.argmax(scores, axis=1) | |
scores = np.max(scores, axis=1) | |
# Apply confidence threshold to filter out low-confidence detections | |
mask = scores > self.conf_thres | |
boxes, scores, labels = boxes[mask], scores[mask], labels[mask] | |
# Convert bounding boxes to (x_min, y_min, x_max, y_max) format | |
boxes = self.bbox_cxcywh_to_xyxy(boxes) | |
# Scale bounding boxes to match the original image dimensions | |
boxes[:, 0::2] *= self.img_width | |
boxes[:, 1::2] *= self.img_height | |
# Draw detections on the image | |
for box, score, label in zip(boxes, scores, labels): | |
self.draw_detections(box, score, label) | |
# Return the annotated image | |
return self.img | |
def main(self): | |
""" | |
Executes the detection on the input image using the ONNX model. | |
Returns: | |
np.array: Output image with annotations. | |
""" | |
# Preprocess the image for model input | |
image_data = self.preprocess() | |
# Run the model inference | |
model_output = self.session.run(None, {self.model_input[0].name: image_data}) | |
# Process and return the model output | |
return self.postprocess(model_output) | |
if __name__ == "__main__": | |
# Set up argument parser for command-line arguments | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model", type=str, default="rtdetr-l.onnx", help="Path to the ONNX model file.") | |
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to the input image.") | |
parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold for object detection.") | |
parser.add_argument("--iou-thres", type=float, default=0.5, help="IoU threshold for non-maximum suppression.") | |
args = parser.parse_args() | |
# Check for dependencies and set up ONNX runtime | |
check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime") | |
# Create the detector instance with specified parameters | |
detection = RTDETR(args.model, args.img, args.conf_thres, args.iou_thres) | |
# Perform detection and get the output image | |
output_image = detection.main() | |
# Display the annotated output image | |
cv2.namedWindow("Output", cv2.WINDOW_NORMAL) | |
cv2.imshow("Output", output_image) | |
cv2.waitKey(0) | |