File size: 75,114 Bytes
1999a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""
Ultralytics Results, Boxes and Masks classes for handling inference results.

Usage: See https://docs.ultralytics.com/modes/predict/
"""

from copy import deepcopy
from functools import lru_cache
from pathlib import Path

import numpy as np
import torch

from ultralytics.data.augment import LetterBox
from ultralytics.utils import LOGGER, SimpleClass, ops
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.plotting import Annotator, colors, save_one_box
from ultralytics.utils.torch_utils import smart_inference_mode


class BaseTensor(SimpleClass):
    """
    Base tensor class with additional methods for easy manipulation and device handling.

    Attributes:
        data (torch.Tensor | np.ndarray): Prediction data such as bounding boxes, masks, or keypoints.
        orig_shape (Tuple[int, int]): Original shape of the image, typically in the format (height, width).

    Methods:
        cpu: Return a copy of the tensor stored in CPU memory.
        numpy: Returns a copy of the tensor as a numpy array.
        cuda: Moves the tensor to GPU memory, returning a new instance if necessary.
        to: Return a copy of the tensor with the specified device and dtype.

    Examples:
        >>> import torch
        >>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
        >>> orig_shape = (720, 1280)
        >>> base_tensor = BaseTensor(data, orig_shape)
        >>> cpu_tensor = base_tensor.cpu()
        >>> numpy_array = base_tensor.numpy()
        >>> gpu_tensor = base_tensor.cuda()
    """

    def __init__(self, data, orig_shape) -> None:
        """
        Initialize BaseTensor with prediction data and the original shape of the image.

        Args:
            data (torch.Tensor | np.ndarray): Prediction data such as bounding boxes, masks, or keypoints.
            orig_shape (Tuple[int, int]): Original shape of the image in (height, width) format.

        Examples:
            >>> import torch
            >>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
            >>> orig_shape = (720, 1280)
            >>> base_tensor = BaseTensor(data, orig_shape)
        """
        assert isinstance(data, (torch.Tensor, np.ndarray)), "data must be torch.Tensor or np.ndarray"
        self.data = data
        self.orig_shape = orig_shape

    @property
    def shape(self):
        """
        Returns the shape of the underlying data tensor.

        Returns:
            (Tuple[int, ...]): The shape of the data tensor.

        Examples:
            >>> data = torch.rand(100, 4)
            >>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
            >>> print(base_tensor.shape)
            (100, 4)
        """
        return self.data.shape

    def cpu(self):
        """
        Returns a copy of the tensor stored in CPU memory.

        Returns:
            (BaseTensor): A new BaseTensor object with the data tensor moved to CPU memory.

        Examples:
            >>> data = torch.tensor([[1, 2, 3], [4, 5, 6]]).cuda()
            >>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
            >>> cpu_tensor = base_tensor.cpu()
            >>> isinstance(cpu_tensor, BaseTensor)
            True
            >>> cpu_tensor.data.device
            device(type='cpu')
        """
        return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.cpu(), self.orig_shape)

    def numpy(self):
        """
        Returns a copy of the tensor as a numpy array.

        Returns:
            (np.ndarray): A numpy array containing the same data as the original tensor.

        Examples:
            >>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
            >>> orig_shape = (720, 1280)
            >>> base_tensor = BaseTensor(data, orig_shape)
            >>> numpy_array = base_tensor.numpy()
            >>> print(type(numpy_array))
            <class 'numpy.ndarray'>
        """
        return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.numpy(), self.orig_shape)

    def cuda(self):
        """
        Moves the tensor to GPU memory.

        Returns:
            (BaseTensor): A new BaseTensor instance with the data moved to GPU memory if it's not already a
                numpy array, otherwise returns self.

        Examples:
            >>> import torch
            >>> from ultralytics.engine.results import BaseTensor
            >>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
            >>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
            >>> gpu_tensor = base_tensor.cuda()
            >>> print(gpu_tensor.data.device)
            cuda:0
        """
        return self.__class__(torch.as_tensor(self.data).cuda(), self.orig_shape)

    def to(self, *args, **kwargs):
        """
        Return a copy of the tensor with the specified device and dtype.

        Args:
            *args (Any): Variable length argument list to be passed to torch.Tensor.to().
            **kwargs (Any): Arbitrary keyword arguments to be passed to torch.Tensor.to().

        Returns:
            (BaseTensor): A new BaseTensor instance with the data moved to the specified device and/or dtype.

        Examples:
            >>> base_tensor = BaseTensor(torch.randn(3, 4), orig_shape=(480, 640))
            >>> cuda_tensor = base_tensor.to("cuda")
            >>> float16_tensor = base_tensor.to(dtype=torch.float16)
        """
        return self.__class__(torch.as_tensor(self.data).to(*args, **kwargs), self.orig_shape)

    def __len__(self):  # override len(results)
        """
        Returns the length of the underlying data tensor.

        Returns:
            (int): The number of elements in the first dimension of the data tensor.

        Examples:
            >>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
            >>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
            >>> len(base_tensor)
            2
        """
        return len(self.data)

    def __getitem__(self, idx):
        """
        Returns a new BaseTensor instance containing the specified indexed elements of the data tensor.

        Args:
            idx (int | List[int] | torch.Tensor): Index or indices to select from the data tensor.

        Returns:
            (BaseTensor): A new BaseTensor instance containing the indexed data.

        Examples:
            >>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
            >>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
            >>> result = base_tensor[0]  # Select the first row
            >>> print(result.data)
            tensor([1, 2, 3])
        """
        return self.__class__(self.data[idx], self.orig_shape)


class Results(SimpleClass):
    """
    A class for storing and manipulating inference results.

    This class encapsulates the functionality for handling detection, segmentation, pose estimation,
    and classification results from YOLO models.

    Attributes:
        orig_img (numpy.ndarray): Original image as a numpy array.
        orig_shape (Tuple[int, int]): Original image shape in (height, width) format.
        boxes (Boxes | None): Object containing detection bounding boxes.
        masks (Masks | None): Object containing detection masks.
        probs (Probs | None): Object containing class probabilities for classification tasks.
        keypoints (Keypoints | None): Object containing detected keypoints for each object.
        obb (OBB | None): Object containing oriented bounding boxes.
        speed (Dict[str, float | None]): Dictionary of preprocess, inference, and postprocess speeds.
        names (Dict[int, str]): Dictionary mapping class IDs to class names.
        path (str): Path to the image file.
        _keys (Tuple[str, ...]): Tuple of attribute names for internal use.

    Methods:
        update: Updates object attributes with new detection results.
        cpu: Returns a copy of the Results object with all tensors on CPU memory.
        numpy: Returns a copy of the Results object with all tensors as numpy arrays.
        cuda: Returns a copy of the Results object with all tensors on GPU memory.
        to: Returns a copy of the Results object with tensors on a specified device and dtype.
        new: Returns a new Results object with the same image, path, and names.
        plot: Plots detection results on an input image, returning an annotated image.
        show: Shows annotated results on screen.
        save: Saves annotated results to file.
        verbose: Returns a log string for each task, detailing detections and classifications.
        save_txt: Saves detection results to a text file.
        save_crop: Saves cropped detection images.
        tojson: Converts detection results to JSON format.

    Examples:
        >>> results = model("path/to/image.jpg")
        >>> for result in results:
        ...     print(result.boxes)  # Print detection boxes
        ...     result.show()  # Display the annotated image
        ...     result.save(filename="result.jpg")  # Save annotated image
    """

    def __init__(
        self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None, obb=None, speed=None
    ) -> None:
        """
        Initialize the Results class for storing and manipulating inference results.

        Args:
            orig_img (numpy.ndarray): The original image as a numpy array.
            path (str): The path to the image file.
            names (Dict): A dictionary of class names.
            boxes (torch.Tensor | None): A 2D tensor of bounding box coordinates for each detection.
            masks (torch.Tensor | None): A 3D tensor of detection masks, where each mask is a binary image.
            probs (torch.Tensor | None): A 1D tensor of probabilities of each class for classification task.
            keypoints (torch.Tensor | None): A 2D tensor of keypoint coordinates for each detection.
            obb (torch.Tensor | None): A 2D tensor of oriented bounding box coordinates for each detection.
            speed (Dict | None): A dictionary containing preprocess, inference, and postprocess speeds (ms/image).

        Examples:
            >>> results = model("path/to/image.jpg")
            >>> result = results[0]  # Get the first result
            >>> boxes = result.boxes  # Get the boxes for the first result
            >>> masks = result.masks  # Get the masks for the first result

        Notes:
            For the default pose model, keypoint indices for human body pose estimation are:
            0: Nose, 1: Left Eye, 2: Right Eye, 3: Left Ear, 4: Right Ear
            5: Left Shoulder, 6: Right Shoulder, 7: Left Elbow, 8: Right Elbow
            9: Left Wrist, 10: Right Wrist, 11: Left Hip, 12: Right Hip
            13: Left Knee, 14: Right Knee, 15: Left Ankle, 16: Right Ankle
        """
        self.orig_img = orig_img
        self.orig_shape = orig_img.shape[:2]
        self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None  # native size boxes
        self.masks = Masks(masks, self.orig_shape) if masks is not None else None  # native size or imgsz masks
        self.probs = Probs(probs) if probs is not None else None
        self.keypoints = Keypoints(keypoints, self.orig_shape) if keypoints is not None else None
        self.obb = OBB(obb, self.orig_shape) if obb is not None else None
        self.speed = speed if speed is not None else {"preprocess": None, "inference": None, "postprocess": None}
        self.names = names
        self.path = path
        self.save_dir = None
        self._keys = "boxes", "masks", "probs", "keypoints", "obb"

    def __getitem__(self, idx):
        """
        Return a Results object for a specific index of inference results.

        Args:
            idx (int | slice): Index or slice to retrieve from the Results object.

        Returns:
            (Results): A new Results object containing the specified subset of inference results.

        Examples:
            >>> results = model("path/to/image.jpg")  # Perform inference
            >>> single_result = results[0]  # Get the first result
            >>> subset_results = results[1:4]  # Get a slice of results
        """
        return self._apply("__getitem__", idx)

    def __len__(self):
        """
        Return the number of detections in the Results object.

        Returns:
            (int): The number of detections, determined by the length of the first non-empty attribute
                (boxes, masks, probs, keypoints, or obb).

        Examples:
            >>> results = Results(orig_img, path, names, boxes=torch.rand(5, 4))
            >>> len(results)
            5
        """
        for k in self._keys:
            v = getattr(self, k)
            if v is not None:
                return len(v)

    def update(self, boxes=None, masks=None, probs=None, obb=None):
        """
        Updates the Results object with new detection data.

        This method allows updating the boxes, masks, probabilities, and oriented bounding boxes (OBB) of the
        Results object. It ensures that boxes are clipped to the original image shape.

        Args:
            boxes (torch.Tensor | None): A tensor of shape (N, 6) containing bounding box coordinates and
                confidence scores. The format is (x1, y1, x2, y2, conf, class).
            masks (torch.Tensor | None): A tensor of shape (N, H, W) containing segmentation masks.
            probs (torch.Tensor | None): A tensor of shape (num_classes,) containing class probabilities.
            obb (torch.Tensor | None): A tensor of shape (N, 5) containing oriented bounding box coordinates.

        Examples:
            >>> results = model("image.jpg")
            >>> new_boxes = torch.tensor([[100, 100, 200, 200, 0.9, 0]])
            >>> results[0].update(boxes=new_boxes)
        """
        if boxes is not None:
            self.boxes = Boxes(ops.clip_boxes(boxes, self.orig_shape), self.orig_shape)
        if masks is not None:
            self.masks = Masks(masks, self.orig_shape)
        if probs is not None:
            self.probs = probs
        if obb is not None:
            self.obb = OBB(obb, self.orig_shape)

    def _apply(self, fn, *args, **kwargs):
        """
        Applies a function to all non-empty attributes and returns a new Results object with modified attributes.

        This method is internally called by methods like .to(), .cuda(), .cpu(), etc.

        Args:
            fn (str): The name of the function to apply.
            *args (Any): Variable length argument list to pass to the function.
            **kwargs (Any): Arbitrary keyword arguments to pass to the function.

        Returns:
            (Results): A new Results object with attributes modified by the applied function.

        Examples:
            >>> results = model("path/to/image.jpg")
            >>> for result in results:
            ...     result_cuda = result.cuda()
            ...     result_cpu = result.cpu()
        """
        r = self.new()
        for k in self._keys:
            v = getattr(self, k)
            if v is not None:
                setattr(r, k, getattr(v, fn)(*args, **kwargs))
        return r

    def cpu(self):
        """
        Returns a copy of the Results object with all its tensors moved to CPU memory.

        This method creates a new Results object with all tensor attributes (boxes, masks, probs, keypoints, obb)
        transferred to CPU memory. It's useful for moving data from GPU to CPU for further processing or saving.

        Returns:
            (Results): A new Results object with all tensor attributes on CPU memory.

        Examples:
            >>> results = model("path/to/image.jpg")  # Perform inference
            >>> cpu_result = results[0].cpu()  # Move the first result to CPU
            >>> print(cpu_result.boxes.device)  # Output: cpu
        """
        return self._apply("cpu")

    def numpy(self):
        """
        Converts all tensors in the Results object to numpy arrays.

        Returns:
            (Results): A new Results object with all tensors converted to numpy arrays.

        Examples:
            >>> results = model("path/to/image.jpg")
            >>> numpy_result = results[0].numpy()
            >>> type(numpy_result.boxes.data)
            <class 'numpy.ndarray'>

        Notes:
            This method creates a new Results object, leaving the original unchanged. It's useful for
            interoperability with numpy-based libraries or when CPU-based operations are required.
        """
        return self._apply("numpy")

    def cuda(self):
        """
        Moves all tensors in the Results object to GPU memory.

        Returns:
            (Results): A new Results object with all tensors moved to CUDA device.

        Examples:
            >>> results = model("path/to/image.jpg")
            >>> cuda_results = results[0].cuda()  # Move first result to GPU
            >>> for result in results:
            ...     result_cuda = result.cuda()  # Move each result to GPU
        """
        return self._apply("cuda")

    def to(self, *args, **kwargs):
        """
        Moves all tensors in the Results object to the specified device and dtype.

        Args:
            *args (Any): Variable length argument list to be passed to torch.Tensor.to().
            **kwargs (Any): Arbitrary keyword arguments to be passed to torch.Tensor.to().

        Returns:
            (Results): A new Results object with all tensors moved to the specified device and dtype.

        Examples:
            >>> results = model("path/to/image.jpg")
            >>> result_cuda = results[0].to("cuda")  # Move first result to GPU
            >>> result_cpu = results[0].to("cpu")  # Move first result to CPU
            >>> result_half = results[0].to(dtype=torch.float16)  # Convert first result to half precision
        """
        return self._apply("to", *args, **kwargs)

    def new(self):
        """
        Creates a new Results object with the same image, path, names, and speed attributes.

        Returns:
            (Results): A new Results object with copied attributes from the original instance.

        Examples:
            >>> results = model("path/to/image.jpg")
            >>> new_result = results[0].new()
        """
        return Results(orig_img=self.orig_img, path=self.path, names=self.names, speed=self.speed)

    def plot(
        self,
        conf=True,
        line_width=None,
        font_size=None,
        font="Arial.ttf",
        pil=False,
        img=None,
        im_gpu=None,
        kpt_radius=5,
        kpt_line=True,
        labels=True,
        boxes=True,
        masks=True,
        probs=True,
        show=False,
        save=False,
        filename=None,
        color_mode="class",
    ):
        """
        Plots detection results on an input RGB image.

        Args:
            conf (bool): Whether to plot detection confidence scores.
            line_width (float | None): Line width of bounding boxes. If None, scaled to image size.
            font_size (float | None): Font size for text. If None, scaled to image size.
            font (str): Font to use for text.
            pil (bool): Whether to return the image as a PIL Image.
            img (np.ndarray | None): Image to plot on. If None, uses original image.
            im_gpu (torch.Tensor | None): Normalized image on GPU for faster mask plotting.
            kpt_radius (int): Radius of drawn keypoints.
            kpt_line (bool): Whether to draw lines connecting keypoints.
            labels (bool): Whether to plot labels of bounding boxes.
            boxes (bool): Whether to plot bounding boxes.
            masks (bool): Whether to plot masks.
            probs (bool): Whether to plot classification probabilities.
            show (bool): Whether to display the annotated image.
            save (bool): Whether to save the annotated image.
            filename (str | None): Filename to save image if save is True.
            color_mode (bool): Specify the color mode, e.g., 'instance' or 'class'. Default to 'class'.

        Returns:
            (np.ndarray): Annotated image as a numpy array.

        Examples:
            >>> results = model("image.jpg")
            >>> for result in results:
            ...     im = result.plot()
            ...     im.show()
        """
        assert color_mode in {"instance", "class"}, f"Expected color_mode='instance' or 'class', not {color_mode}."
        if img is None and isinstance(self.orig_img, torch.Tensor):
            img = (self.orig_img[0].detach().permute(1, 2, 0).contiguous() * 255).to(torch.uint8).cpu().numpy()

        names = self.names
        is_obb = self.obb is not None
        pred_boxes, show_boxes = self.obb if is_obb else self.boxes, boxes
        pred_masks, show_masks = self.masks, masks
        pred_probs, show_probs = self.probs, probs
        annotator = Annotator(
            deepcopy(self.orig_img if img is None else img),
            line_width,
            font_size,
            font,
            pil or (pred_probs is not None and show_probs),  # Classify tasks default to pil=True
            example=names,
        )

        # Plot Segment results
        if pred_masks and show_masks:
            if im_gpu is None:
                img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
                im_gpu = (
                    torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device)
                    .permute(2, 0, 1)
                    .flip(0)
                    .contiguous()
                    / 255
                )
            idx = (
                pred_boxes.id
                if pred_boxes.id is not None and color_mode == "instance"
                else pred_boxes.cls
                if pred_boxes and color_mode == "class"
                else reversed(range(len(pred_masks)))
            )
            annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=im_gpu)

        # Plot Detect results
        if pred_boxes is not None and show_boxes:
            for i, d in enumerate(reversed(pred_boxes)):
                c, d_conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
                name = ("" if id is None else f"id:{id} ") + names[c]
                label = (f"{name} {d_conf:.2f}" if conf else name) if labels else None
                box = d.xyxyxyxy.reshape(-1, 4, 2).squeeze() if is_obb else d.xyxy.squeeze()
                annotator.box_label(
                    box,
                    label,
                    color=colors(
                        c
                        if color_mode == "class"
                        else id
                        if id is not None
                        else i
                        if color_mode == "instance"
                        else None,
                        True,
                    ),
                    rotated=is_obb,
                )

        # Plot Classify results
        if pred_probs is not None and show_probs:
            text = ",\n".join(f"{names[j] if names else j} {pred_probs.data[j]:.2f}" for j in pred_probs.top5)
            x = round(self.orig_shape[0] * 0.03)
            annotator.text([x, x], text, txt_color=(255, 255, 255))  # TODO: allow setting colors

        # Plot Pose results
        if self.keypoints is not None:
            for i, k in enumerate(reversed(self.keypoints.data)):
                annotator.kpts(
                    k,
                    self.orig_shape,
                    radius=kpt_radius,
                    kpt_line=kpt_line,
                    kpt_color=colors(i, True) if color_mode == "instance" else None,
                )

        # Show results
        if show:
            annotator.show(self.path)

        # Save results
        if save:
            annotator.save(filename)

        return annotator.result()

    def show(self, *args, **kwargs):
        """
        Display the image with annotated inference results.

        This method plots the detection results on the original image and displays it. It's a convenient way to
        visualize the model's predictions directly.

        Args:
            *args (Any): Variable length argument list to be passed to the `plot()` method.
            **kwargs (Any): Arbitrary keyword arguments to be passed to the `plot()` method.

        Examples:
            >>> results = model("path/to/image.jpg")
            >>> results[0].show()  # Display the first result
            >>> for result in results:
            ...     result.show()  # Display all results
        """
        self.plot(show=True, *args, **kwargs)

    def save(self, filename=None, *args, **kwargs):
        """
        Saves annotated inference results image to file.

        This method plots the detection results on the original image and saves the annotated image to a file. It
        utilizes the `plot` method to generate the annotated image and then saves it to the specified filename.

        Args:
            filename (str | Path | None): The filename to save the annotated image. If None, a default filename
                is generated based on the original image path.
            *args (Any): Variable length argument list to be passed to the `plot` method.
            **kwargs (Any): Arbitrary keyword arguments to be passed to the `plot` method.

        Examples:
            >>> results = model("path/to/image.jpg")
            >>> for result in results:
            ...     result.save("annotated_image.jpg")
            >>> # Or with custom plot arguments
            >>> for result in results:
            ...     result.save("annotated_image.jpg", conf=False, line_width=2)
        """
        if not filename:
            filename = f"results_{Path(self.path).name}"
        self.plot(save=True, filename=filename, *args, **kwargs)
        return filename

    def verbose(self):
        """
        Returns a log string for each task in the results, detailing detection and classification outcomes.

        This method generates a human-readable string summarizing the detection and classification results. It includes
        the number of detections for each class and the top probabilities for classification tasks.

        Returns:
            (str): A formatted string containing a summary of the results. For detection tasks, it includes the
                number of detections per class. For classification tasks, it includes the top 5 class probabilities.

        Examples:
            >>> results = model("path/to/image.jpg")
            >>> for result in results:
            ...     print(result.verbose())
            2 persons, 1 car, 3 traffic lights,
            dog 0.92, cat 0.78, horse 0.64,

        Notes:
            - If there are no detections, the method returns "(no detections), " for detection tasks.
            - For classification tasks, it returns the top 5 class probabilities and their corresponding class names.
            - The returned string is comma-separated and ends with a comma and a space.
        """
        log_string = ""
        probs = self.probs
        if len(self) == 0:
            return log_string if probs is not None else f"{log_string}(no detections), "
        if probs is not None:
            log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
        if boxes := self.boxes:
            for c in boxes.cls.unique():
                n = (boxes.cls == c).sum()  # detections per class
                log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
        return log_string

    def save_txt(self, txt_file, save_conf=False):
        """
        Save detection results to a text file.

        Args:
            txt_file (str | Path): Path to the output text file.
            save_conf (bool): Whether to include confidence scores in the output.

        Returns:
            (str): Path to the saved text file.

        Examples:
            >>> from ultralytics import YOLO
            >>> model = YOLO("yolo11n.pt")
            >>> results = model("path/to/image.jpg")
            >>> for result in results:
            ...     result.save_txt("output.txt")

        Notes:
            - The file will contain one line per detection or classification with the following structure:
              - For detections: `class confidence x_center y_center width height`
              - For classifications: `confidence class_name`
              - For masks and keypoints, the specific formats will vary accordingly.
            - The function will create the output directory if it does not exist.
            - If save_conf is False, the confidence scores will be excluded from the output.
            - Existing contents of the file will not be overwritten; new results will be appended.
        """
        is_obb = self.obb is not None
        boxes = self.obb if is_obb else self.boxes
        masks = self.masks
        probs = self.probs
        kpts = self.keypoints
        texts = []
        if probs is not None:
            # Classify
            [texts.append(f"{probs.data[j]:.2f} {self.names[j]}") for j in probs.top5]
        elif boxes:
            # Detect/segment/pose
            for j, d in enumerate(boxes):
                c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item())
                line = (c, *(d.xyxyxyxyn.view(-1) if is_obb else d.xywhn.view(-1)))
                if masks:
                    seg = masks[j].xyn[0].copy().reshape(-1)  # reversed mask.xyn, (n,2) to (n*2)
                    line = (c, *seg)
                if kpts is not None:
                    kpt = torch.cat((kpts[j].xyn, kpts[j].conf[..., None]), 2) if kpts[j].has_visible else kpts[j].xyn
                    line += (*kpt.reshape(-1).tolist(),)
                line += (conf,) * save_conf + (() if id is None else (id,))
                texts.append(("%g " * len(line)).rstrip() % line)

        if texts:
            Path(txt_file).parent.mkdir(parents=True, exist_ok=True)  # make directory
            with open(txt_file, "a") as f:
                f.writelines(text + "\n" for text in texts)

    def save_crop(self, save_dir, file_name=Path("im.jpg")):
        """
        Saves cropped detection images to specified directory.

        This method saves cropped images of detected objects to a specified directory. Each crop is saved in a
        subdirectory named after the object's class, with the filename based on the input file_name.

        Args:
            save_dir (str | Path): Directory path where cropped images will be saved.
            file_name (str | Path): Base filename for the saved cropped images. Default is Path("im.jpg").

        Notes:
            - This method does not support Classify or Oriented Bounding Box (OBB) tasks.
            - Crops are saved as 'save_dir/class_name/file_name.jpg'.
            - The method will create necessary subdirectories if they don't exist.
            - Original image is copied before cropping to avoid modifying the original.

        Examples:
            >>> results = model("path/to/image.jpg")
            >>> for result in results:
            ...     result.save_crop(save_dir="path/to/crops", file_name="detection")
        """
        if self.probs is not None:
            LOGGER.warning("WARNING ⚠️ Classify task do not support `save_crop`.")
            return
        if self.obb is not None:
            LOGGER.warning("WARNING ⚠️ OBB task do not support `save_crop`.")
            return
        for d in self.boxes:
            save_one_box(
                d.xyxy,
                self.orig_img.copy(),
                file=Path(save_dir) / self.names[int(d.cls)] / Path(file_name).with_suffix(".jpg"),
                BGR=True,
            )

    def summary(self, normalize=False, decimals=5):
        """
        Converts inference results to a summarized dictionary with optional normalization for box coordinates.

        This method creates a list of detection dictionaries, each containing information about a single
        detection or classification result. For classification tasks, it returns the top class and its
        confidence. For detection tasks, it includes class information, bounding box coordinates, and
        optionally mask segments and keypoints.

        Args:
            normalize (bool): Whether to normalize bounding box coordinates by image dimensions. Defaults to False.
            decimals (int): Number of decimal places to round the output values to. Defaults to 5.

        Returns:
            (List[Dict]): A list of dictionaries, each containing summarized information for a single
                detection or classification result. The structure of each dictionary varies based on the
                task type (classification or detection) and available information (boxes, masks, keypoints).

        Examples:
            >>> results = model("image.jpg")
            >>> summary = results[0].summary()
            >>> print(summary)
        """
        # Create list of detection dictionaries
        results = []
        if self.probs is not None:
            class_id = self.probs.top1
            results.append(
                {
                    "name": self.names[class_id],
                    "class": class_id,
                    "confidence": round(self.probs.top1conf.item(), decimals),
                }
            )
            return results

        is_obb = self.obb is not None
        data = self.obb if is_obb else self.boxes
        h, w = self.orig_shape if normalize else (1, 1)
        for i, row in enumerate(data):  # xyxy, track_id if tracking, conf, class_id
            class_id, conf = int(row.cls), round(row.conf.item(), decimals)
            box = (row.xyxyxyxy if is_obb else row.xyxy).squeeze().reshape(-1, 2).tolist()
            xy = {}
            for j, b in enumerate(box):
                xy[f"x{j + 1}"] = round(b[0] / w, decimals)
                xy[f"y{j + 1}"] = round(b[1] / h, decimals)
            result = {"name": self.names[class_id], "class": class_id, "confidence": conf, "box": xy}
            if data.is_track:
                result["track_id"] = int(row.id.item())  # track ID
            if self.masks:
                result["segments"] = {
                    "x": (self.masks.xy[i][:, 0] / w).round(decimals).tolist(),
                    "y": (self.masks.xy[i][:, 1] / h).round(decimals).tolist(),
                }
            if self.keypoints is not None:
                x, y, visible = self.keypoints[i].data[0].cpu().unbind(dim=1)  # torch Tensor
                result["keypoints"] = {
                    "x": (x / w).numpy().round(decimals).tolist(),  # decimals named argument required
                    "y": (y / h).numpy().round(decimals).tolist(),
                    "visible": visible.numpy().round(decimals).tolist(),
                }
            results.append(result)

        return results

    def to_df(self, normalize=False, decimals=5):
        """
        Converts detection results to a Pandas Dataframe.

        This method converts the detection results into Pandas Dataframe format. It includes information
        about detected objects such as bounding boxes, class names, confidence scores, and optionally
        segmentation masks and keypoints.

        Args:
            normalize (bool): Whether to normalize the bounding box coordinates by the image dimensions.
                If True, coordinates will be returned as float values between 0 and 1. Defaults to False.
            decimals (int): Number of decimal places to round the output values to. Defaults to 5.

        Returns:
            (DataFrame): A Pandas Dataframe containing all the information in results in an organized way.

        Examples:
            >>> results = model("path/to/image.jpg")
            >>> df_result = results[0].to_df()
            >>> print(df_result)
        """
        import pandas as pd  # scope for faster 'import ultralytics'

        return pd.DataFrame(self.summary(normalize=normalize, decimals=decimals))

    def to_csv(self, normalize=False, decimals=5, *args, **kwargs):
        """
        Converts detection results to a CSV format.

        This method serializes the detection results into a CSV format. It includes information
        about detected objects such as bounding boxes, class names, confidence scores, and optionally
        segmentation masks and keypoints.

        Args:
            normalize (bool): Whether to normalize the bounding box coordinates by the image dimensions.
                If True, coordinates will be returned as float values between 0 and 1. Defaults to False.
            decimals (int): Number of decimal places to round the output values to. Defaults to 5.
            *args (Any): Variable length argument list to be passed to pandas.DataFrame.to_csv().
            **kwargs (Any): Arbitrary keyword arguments to be passed to pandas.DataFrame.to_csv().


        Returns:
            (str): CSV containing all the information in results in an organized way.

        Examples:
            >>> results = model("path/to/image.jpg")
            >>> csv_result = results[0].to_csv()
            >>> print(csv_result)
        """
        return self.to_df(normalize=normalize, decimals=decimals).to_csv(*args, **kwargs)

    def to_xml(self, normalize=False, decimals=5, *args, **kwargs):
        """
        Converts detection results to XML format.

        This method serializes the detection results into an XML format. It includes information
        about detected objects such as bounding boxes, class names, confidence scores, and optionally
        segmentation masks and keypoints.

        Args:
            normalize (bool): Whether to normalize the bounding box coordinates by the image dimensions.
                If True, coordinates will be returned as float values between 0 and 1. Defaults to False.
            decimals (int): Number of decimal places to round the output values to. Defaults to 5.
            *args (Any): Variable length argument list to be passed to pandas.DataFrame.to_xml().
            **kwargs (Any): Arbitrary keyword arguments to be passed to pandas.DataFrame.to_xml().

        Returns:
            (str): An XML string containing all the information in results in an organized way.

        Examples:
            >>> results = model("path/to/image.jpg")
            >>> xml_result = results[0].to_xml()
            >>> print(xml_result)
        """
        check_requirements("lxml")
        df = self.to_df(normalize=normalize, decimals=decimals)
        return '<?xml version="1.0" encoding="utf-8"?>\n<root></root>' if df.empty else df.to_xml(*args, **kwargs)

    def tojson(self, normalize=False, decimals=5):
        """Deprecated version of to_json()."""
        LOGGER.warning("WARNING ⚠️ 'result.tojson()' is deprecated, replace with 'result.to_json()'.")
        return self.to_json(normalize, decimals)

    def to_json(self, normalize=False, decimals=5):
        """
        Converts detection results to JSON format.

        This method serializes the detection results into a JSON-compatible format. It includes information
        about detected objects such as bounding boxes, class names, confidence scores, and optionally
        segmentation masks and keypoints.

        Args:
            normalize (bool): Whether to normalize the bounding box coordinates by the image dimensions.
                If True, coordinates will be returned as float values between 0 and 1. Defaults to False.
            decimals (int): Number of decimal places to round the output values to. Defaults to 5.

        Returns:
            (str): A JSON string containing the serialized detection results.

        Examples:
            >>> results = model("path/to/image.jpg")
            >>> json_result = results[0].to_json()
            >>> print(json_result)

        Notes:
            - For classification tasks, the JSON will contain class probabilities instead of bounding boxes.
            - For object detection tasks, the JSON will include bounding box coordinates, class names, and
              confidence scores.
            - If available, segmentation masks and keypoints will also be included in the JSON output.
            - The method uses the `summary` method internally to generate the data structure before
              converting it to JSON.
        """
        import json

        return json.dumps(self.summary(normalize=normalize, decimals=decimals), indent=2)


class Boxes(BaseTensor):
    """
    A class for managing and manipulating detection boxes.

    This class provides functionality for handling detection boxes, including their coordinates, confidence scores,
    class labels, and optional tracking IDs. It supports various box formats and offers methods for easy manipulation
    and conversion between different coordinate systems.

    Attributes:
        data (torch.Tensor | numpy.ndarray): The raw tensor containing detection boxes and associated data.
        orig_shape (Tuple[int, int]): The original image dimensions (height, width).
        is_track (bool): Indicates whether tracking IDs are included in the box data.
        xyxy (torch.Tensor | numpy.ndarray): Boxes in [x1, y1, x2, y2] format.
        conf (torch.Tensor | numpy.ndarray): Confidence scores for each box.
        cls (torch.Tensor | numpy.ndarray): Class labels for each box.
        id (torch.Tensor | numpy.ndarray): Tracking IDs for each box (if available).
        xywh (torch.Tensor | numpy.ndarray): Boxes in [x, y, width, height] format.
        xyxyn (torch.Tensor | numpy.ndarray): Normalized [x1, y1, x2, y2] boxes relative to orig_shape.
        xywhn (torch.Tensor | numpy.ndarray): Normalized [x, y, width, height] boxes relative to orig_shape.

    Methods:
        cpu(): Returns a copy of the object with all tensors on CPU memory.
        numpy(): Returns a copy of the object with all tensors as numpy arrays.
        cuda(): Returns a copy of the object with all tensors on GPU memory.
        to(*args, **kwargs): Returns a copy of the object with tensors on specified device and dtype.

    Examples:
        >>> import torch
        >>> boxes_data = torch.tensor([[100, 50, 150, 100, 0.9, 0], [200, 150, 300, 250, 0.8, 1]])
        >>> orig_shape = (480, 640)  # height, width
        >>> boxes = Boxes(boxes_data, orig_shape)
        >>> print(boxes.xyxy)
        >>> print(boxes.conf)
        >>> print(boxes.cls)
        >>> print(boxes.xywhn)
    """

    def __init__(self, boxes, orig_shape) -> None:
        """
        Initialize the Boxes class with detection box data and the original image shape.

        This class manages detection boxes, providing easy access and manipulation of box coordinates,
        confidence scores, class identifiers, and optional tracking IDs. It supports multiple formats
        for box coordinates, including both absolute and normalized forms.

        Args:
            boxes (torch.Tensor | np.ndarray): A tensor or numpy array with detection boxes of shape
                (num_boxes, 6) or (num_boxes, 7). Columns should contain
                [x1, y1, x2, y2, confidence, class, (optional) track_id].
            orig_shape (Tuple[int, int]): The original image shape as (height, width). Used for normalization.

        Attributes:
            data (torch.Tensor): The raw tensor containing detection boxes and their associated data.
            orig_shape (Tuple[int, int]): The original image size, used for normalization.
            is_track (bool): Indicates whether tracking IDs are included in the box data.

        Examples:
            >>> import torch
            >>> boxes = torch.tensor([[100, 50, 150, 100, 0.9, 0]])
            >>> orig_shape = (480, 640)
            >>> detection_boxes = Boxes(boxes, orig_shape)
            >>> print(detection_boxes.xyxy)
            tensor([[100.,  50., 150., 100.]])
        """
        if boxes.ndim == 1:
            boxes = boxes[None, :]
        n = boxes.shape[-1]
        assert n in {6, 7}, f"expected 6 or 7 values but got {n}"  # xyxy, track_id, conf, cls
        super().__init__(boxes, orig_shape)
        self.is_track = n == 7
        self.orig_shape = orig_shape

    @property
    def xyxy(self):
        """
        Returns bounding boxes in [x1, y1, x2, y2] format.

        Returns:
            (torch.Tensor | numpy.ndarray): A tensor or numpy array of shape (n, 4) containing bounding box
                coordinates in [x1, y1, x2, y2] format, where n is the number of boxes.

        Examples:
            >>> results = model("image.jpg")
            >>> boxes = results[0].boxes
            >>> xyxy = boxes.xyxy
            >>> print(xyxy)
        """
        return self.data[:, :4]

    @property
    def conf(self):
        """
        Returns the confidence scores for each detection box.

        Returns:
            (torch.Tensor | numpy.ndarray): A 1D tensor or array containing confidence scores for each detection,
                with shape (N,) where N is the number of detections.

        Examples:
            >>> boxes = Boxes(torch.tensor([[10, 20, 30, 40, 0.9, 0]]), orig_shape=(100, 100))
            >>> conf_scores = boxes.conf
            >>> print(conf_scores)
            tensor([0.9000])
        """
        return self.data[:, -2]

    @property
    def cls(self):
        """
        Returns the class ID tensor representing category predictions for each bounding box.

        Returns:
            (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the class IDs for each detection box.
                The shape is (N,), where N is the number of boxes.

        Examples:
            >>> results = model("image.jpg")
            >>> boxes = results[0].boxes
            >>> class_ids = boxes.cls
            >>> print(class_ids)  # tensor([0., 2., 1.])
        """
        return self.data[:, -1]

    @property
    def id(self):
        """
        Returns the tracking IDs for each detection box if available.

        Returns:
            (torch.Tensor | None): A tensor containing tracking IDs for each box if tracking is enabled,
                otherwise None. Shape is (N,) where N is the number of boxes.

        Examples:
            >>> results = model.track("path/to/video.mp4")
            >>> for result in results:
            ...     boxes = result.boxes
            ...     if boxes.is_track:
            ...         track_ids = boxes.id
            ...         print(f"Tracking IDs: {track_ids}")
            ...     else:
            ...         print("Tracking is not enabled for these boxes.")

        Notes:
            - This property is only available when tracking is enabled (i.e., when `is_track` is True).
            - The tracking IDs are typically used to associate detections across multiple frames in video analysis.
        """
        return self.data[:, -3] if self.is_track else None

    @property
    @lru_cache(maxsize=2)  # maxsize 1 should suffice
    def xywh(self):
        """
        Convert bounding boxes from [x1, y1, x2, y2] format to [x, y, width, height] format.

        Returns:
            (torch.Tensor | numpy.ndarray): Boxes in [x_center, y_center, width, height] format, where x_center, y_center are the coordinates of
                the center point of the bounding box, width, height are the dimensions of the bounding box and the
                shape of the returned tensor is (N, 4), where N is the number of boxes.

        Examples:
            >>> boxes = Boxes(torch.tensor([[100, 50, 150, 100], [200, 150, 300, 250]]), orig_shape=(480, 640))
            >>> xywh = boxes.xywh
            >>> print(xywh)
            tensor([[100.0000,  50.0000,  50.0000,  50.0000],
                    [200.0000, 150.0000, 100.0000, 100.0000]])
        """
        return ops.xyxy2xywh(self.xyxy)

    @property
    @lru_cache(maxsize=2)
    def xyxyn(self):
        """
        Returns normalized bounding box coordinates relative to the original image size.

        This property calculates and returns the bounding box coordinates in [x1, y1, x2, y2] format,
        normalized to the range [0, 1] based on the original image dimensions.

        Returns:
            (torch.Tensor | numpy.ndarray): Normalized bounding box coordinates with shape (N, 4), where N is
                the number of boxes. Each row contains [x1, y1, x2, y2] values normalized to [0, 1].

        Examples:
            >>> boxes = Boxes(torch.tensor([[100, 50, 300, 400, 0.9, 0]]), orig_shape=(480, 640))
            >>> normalized = boxes.xyxyn
            >>> print(normalized)
            tensor([[0.1562, 0.1042, 0.4688, 0.8333]])
        """
        xyxy = self.xyxy.clone() if isinstance(self.xyxy, torch.Tensor) else np.copy(self.xyxy)
        xyxy[..., [0, 2]] /= self.orig_shape[1]
        xyxy[..., [1, 3]] /= self.orig_shape[0]
        return xyxy

    @property
    @lru_cache(maxsize=2)
    def xywhn(self):
        """
        Returns normalized bounding boxes in [x, y, width, height] format.

        This property calculates and returns the normalized bounding box coordinates in the format
        [x_center, y_center, width, height], where all values are relative to the original image dimensions.

        Returns:
            (torch.Tensor | numpy.ndarray): Normalized bounding boxes with shape (N, 4), where N is the
                number of boxes. Each row contains [x_center, y_center, width, height] values normalized
                to [0, 1] based on the original image dimensions.

        Examples:
            >>> boxes = Boxes(torch.tensor([[100, 50, 150, 100, 0.9, 0]]), orig_shape=(480, 640))
            >>> normalized = boxes.xywhn
            >>> print(normalized)
            tensor([[0.1953, 0.1562, 0.0781, 0.1042]])
        """
        xywh = ops.xyxy2xywh(self.xyxy)
        xywh[..., [0, 2]] /= self.orig_shape[1]
        xywh[..., [1, 3]] /= self.orig_shape[0]
        return xywh


class Masks(BaseTensor):
    """
    A class for storing and manipulating detection masks.

    This class extends BaseTensor and provides functionality for handling segmentation masks,
    including methods for converting between pixel and normalized coordinates.

    Attributes:
        data (torch.Tensor | numpy.ndarray): The raw tensor or array containing mask data.
        orig_shape (tuple): Original image shape in (height, width) format.
        xy (List[numpy.ndarray]): A list of segments in pixel coordinates.
        xyn (List[numpy.ndarray]): A list of normalized segments.

    Methods:
        cpu(): Returns a copy of the Masks object with the mask tensor on CPU memory.
        numpy(): Returns a copy of the Masks object with the mask tensor as a numpy array.
        cuda(): Returns a copy of the Masks object with the mask tensor on GPU memory.
        to(*args, **kwargs): Returns a copy of the Masks object with the mask tensor on specified device and dtype.

    Examples:
        >>> masks_data = torch.rand(1, 160, 160)
        >>> orig_shape = (720, 1280)
        >>> masks = Masks(masks_data, orig_shape)
        >>> pixel_coords = masks.xy
        >>> normalized_coords = masks.xyn
    """

    def __init__(self, masks, orig_shape) -> None:
        """
        Initialize the Masks class with detection mask data and the original image shape.

        Args:
            masks (torch.Tensor | np.ndarray): Detection masks with shape (num_masks, height, width).
            orig_shape (tuple): The original image shape as (height, width). Used for normalization.

        Examples:
            >>> import torch
            >>> from ultralytics.engine.results import Masks
            >>> masks = torch.rand(10, 160, 160)  # 10 masks of 160x160 resolution
            >>> orig_shape = (720, 1280)  # Original image shape
            >>> mask_obj = Masks(masks, orig_shape)
        """
        if masks.ndim == 2:
            masks = masks[None, :]
        super().__init__(masks, orig_shape)

    @property
    @lru_cache(maxsize=1)
    def xyn(self):
        """
        Returns normalized xy-coordinates of the segmentation masks.

        This property calculates and caches the normalized xy-coordinates of the segmentation masks. The coordinates
        are normalized relative to the original image shape.

        Returns:
            (List[numpy.ndarray]): A list of numpy arrays, where each array contains the normalized xy-coordinates
                of a single segmentation mask. Each array has shape (N, 2), where N is the number of points in the
                mask contour.

        Examples:
            >>> results = model("image.jpg")
            >>> masks = results[0].masks
            >>> normalized_coords = masks.xyn
            >>> print(normalized_coords[0])  # Normalized coordinates of the first mask
        """
        return [
            ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True)
            for x in ops.masks2segments(self.data)
        ]

    @property
    @lru_cache(maxsize=1)
    def xy(self):
        """
        Returns the [x, y] pixel coordinates for each segment in the mask tensor.

        This property calculates and returns a list of pixel coordinates for each segmentation mask in the
        Masks object. The coordinates are scaled to match the original image dimensions.

        Returns:
            (List[numpy.ndarray]): A list of numpy arrays, where each array contains the [x, y] pixel
                coordinates for a single segmentation mask. Each array has shape (N, 2), where N is the
                number of points in the segment.

        Examples:
            >>> results = model("image.jpg")
            >>> masks = results[0].masks
            >>> xy_coords = masks.xy
            >>> print(len(xy_coords))  # Number of masks
            >>> print(xy_coords[0].shape)  # Shape of first mask's coordinates
        """
        return [
            ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False)
            for x in ops.masks2segments(self.data)
        ]


class Keypoints(BaseTensor):
    """
    A class for storing and manipulating detection keypoints.

    This class encapsulates functionality for handling keypoint data, including coordinate manipulation,
    normalization, and confidence values.

    Attributes:
        data (torch.Tensor): The raw tensor containing keypoint data.
        orig_shape (Tuple[int, int]): The original image dimensions (height, width).
        has_visible (bool): Indicates whether visibility information is available for keypoints.
        xy (torch.Tensor): Keypoint coordinates in [x, y] format.
        xyn (torch.Tensor): Normalized keypoint coordinates in [x, y] format, relative to orig_shape.
        conf (torch.Tensor): Confidence values for each keypoint, if available.

    Methods:
        cpu(): Returns a copy of the keypoints tensor on CPU memory.
        numpy(): Returns a copy of the keypoints tensor as a numpy array.
        cuda(): Returns a copy of the keypoints tensor on GPU memory.
        to(*args, **kwargs): Returns a copy of the keypoints tensor with specified device and dtype.

    Examples:
        >>> import torch
        >>> from ultralytics.engine.results import Keypoints
        >>> keypoints_data = torch.rand(1, 17, 3)  # 1 detection, 17 keypoints, (x, y, conf)
        >>> orig_shape = (480, 640)  # Original image shape (height, width)
        >>> keypoints = Keypoints(keypoints_data, orig_shape)
        >>> print(keypoints.xy.shape)  # Access xy coordinates
        >>> print(keypoints.conf)  # Access confidence values
        >>> keypoints_cpu = keypoints.cpu()  # Move keypoints to CPU
    """

    @smart_inference_mode()  # avoid keypoints < conf in-place error
    def __init__(self, keypoints, orig_shape) -> None:
        """
        Initializes the Keypoints object with detection keypoints and original image dimensions.

        This method processes the input keypoints tensor, handling both 2D and 3D formats. For 3D tensors
        (x, y, confidence), it masks out low-confidence keypoints by setting their coordinates to zero.

        Args:
            keypoints (torch.Tensor): A tensor containing keypoint data. Shape can be either:
                - (num_objects, num_keypoints, 2) for x, y coordinates only
                - (num_objects, num_keypoints, 3) for x, y coordinates and confidence scores
            orig_shape (Tuple[int, int]): The original image dimensions (height, width).

        Examples:
            >>> kpts = torch.rand(1, 17, 3)  # 1 object, 17 keypoints (COCO format), x,y,conf
            >>> orig_shape = (720, 1280)  # Original image height, width
            >>> keypoints = Keypoints(kpts, orig_shape)
        """
        if keypoints.ndim == 2:
            keypoints = keypoints[None, :]
        if keypoints.shape[2] == 3:  # x, y, conf
            mask = keypoints[..., 2] < 0.5  # points with conf < 0.5 (not visible)
            keypoints[..., :2][mask] = 0
        super().__init__(keypoints, orig_shape)
        self.has_visible = self.data.shape[-1] == 3

    @property
    @lru_cache(maxsize=1)
    def xy(self):
        """
        Returns x, y coordinates of keypoints.

        Returns:
            (torch.Tensor): A tensor containing the x, y coordinates of keypoints with shape (N, K, 2), where N is
                the number of detections and K is the number of keypoints per detection.

        Examples:
            >>> results = model("image.jpg")
            >>> keypoints = results[0].keypoints
            >>> xy = keypoints.xy
            >>> print(xy.shape)  # (N, K, 2)
            >>> print(xy[0])  # x, y coordinates of keypoints for first detection

        Notes:
            - The returned coordinates are in pixel units relative to the original image dimensions.
            - If keypoints were initialized with confidence values, only keypoints with confidence >= 0.5 are returned.
            - This property uses LRU caching to improve performance on repeated access.
        """
        return self.data[..., :2]

    @property
    @lru_cache(maxsize=1)
    def xyn(self):
        """
        Returns normalized coordinates (x, y) of keypoints relative to the original image size.

        Returns:
            (torch.Tensor | numpy.ndarray): A tensor or array of shape (N, K, 2) containing normalized keypoint
                coordinates, where N is the number of instances, K is the number of keypoints, and the last
                dimension contains [x, y] values in the range [0, 1].

        Examples:
            >>> keypoints = Keypoints(torch.rand(1, 17, 2), orig_shape=(480, 640))
            >>> normalized_kpts = keypoints.xyn
            >>> print(normalized_kpts.shape)
            torch.Size([1, 17, 2])
        """
        xy = self.xy.clone() if isinstance(self.xy, torch.Tensor) else np.copy(self.xy)
        xy[..., 0] /= self.orig_shape[1]
        xy[..., 1] /= self.orig_shape[0]
        return xy

    @property
    @lru_cache(maxsize=1)
    def conf(self):
        """
        Returns confidence values for each keypoint.

        Returns:
            (torch.Tensor | None): A tensor containing confidence scores for each keypoint if available,
                otherwise None. Shape is (num_detections, num_keypoints) for batched data or (num_keypoints,)
                for single detection.

        Examples:
            >>> keypoints = Keypoints(torch.rand(1, 17, 3), orig_shape=(640, 640))  # 1 detection, 17 keypoints
            >>> conf = keypoints.conf
            >>> print(conf.shape)  # torch.Size([1, 17])
        """
        return self.data[..., 2] if self.has_visible else None


class Probs(BaseTensor):
    """
    A class for storing and manipulating classification probabilities.

    This class extends BaseTensor and provides methods for accessing and manipulating
    classification probabilities, including top-1 and top-5 predictions.

    Attributes:
        data (torch.Tensor | numpy.ndarray): The raw tensor or array containing classification probabilities.
        orig_shape (tuple | None): The original image shape as (height, width). Not used in this class.
        top1 (int): Index of the class with the highest probability.
        top5 (List[int]): Indices of the top 5 classes by probability.
        top1conf (torch.Tensor | numpy.ndarray): Confidence score of the top 1 class.
        top5conf (torch.Tensor | numpy.ndarray): Confidence scores of the top 5 classes.

    Methods:
        cpu(): Returns a copy of the probabilities tensor on CPU memory.
        numpy(): Returns a copy of the probabilities tensor as a numpy array.
        cuda(): Returns a copy of the probabilities tensor on GPU memory.
        to(*args, **kwargs): Returns a copy of the probabilities tensor with specified device and dtype.

    Examples:
        >>> probs = torch.tensor([0.1, 0.3, 0.6])
        >>> p = Probs(probs)
        >>> print(p.top1)
        2
        >>> print(p.top5)
        [2, 1, 0]
        >>> print(p.top1conf)
        tensor(0.6000)
        >>> print(p.top5conf)
        tensor([0.6000, 0.3000, 0.1000])
    """

    def __init__(self, probs, orig_shape=None) -> None:
        """
        Initialize the Probs class with classification probabilities.

        This class stores and manages classification probabilities, providing easy access to top predictions and their
        confidences.

        Args:
            probs (torch.Tensor | np.ndarray): A 1D tensor or array of classification probabilities.
            orig_shape (tuple | None): The original image shape as (height, width). Not used in this class but kept for
                consistency with other result classes.

        Attributes:
            data (torch.Tensor | np.ndarray): The raw tensor or array containing classification probabilities.
            top1 (int): Index of the top 1 class.
            top5 (List[int]): Indices of the top 5 classes.
            top1conf (torch.Tensor | np.ndarray): Confidence of the top 1 class.
            top5conf (torch.Tensor | np.ndarray): Confidences of the top 5 classes.

        Examples:
            >>> import torch
            >>> probs = torch.tensor([0.1, 0.3, 0.2, 0.4])
            >>> p = Probs(probs)
            >>> print(p.top1)
            3
            >>> print(p.top1conf)
            tensor(0.4000)
            >>> print(p.top5)
            [3, 1, 2, 0]
        """
        super().__init__(probs, orig_shape)

    @property
    @lru_cache(maxsize=1)
    def top1(self):
        """
        Returns the index of the class with the highest probability.

        Returns:
            (int): Index of the class with the highest probability.

        Examples:
            >>> probs = Probs(torch.tensor([0.1, 0.3, 0.6]))
            >>> probs.top1
            2
        """
        return int(self.data.argmax())

    @property
    @lru_cache(maxsize=1)
    def top5(self):
        """
        Returns the indices of the top 5 class probabilities.

        Returns:
            (List[int]): A list containing the indices of the top 5 class probabilities, sorted in descending order.

        Examples:
            >>> probs = Probs(torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5]))
            >>> print(probs.top5)
            [4, 3, 2, 1, 0]
        """
        return (-self.data).argsort(0)[:5].tolist()  # this way works with both torch and numpy.

    @property
    @lru_cache(maxsize=1)
    def top1conf(self):
        """
        Returns the confidence score of the highest probability class.

        This property retrieves the confidence score (probability) of the class with the highest predicted probability
        from the classification results.

        Returns:
            (torch.Tensor | numpy.ndarray): A tensor containing the confidence score of the top 1 class.

        Examples:
            >>> results = model("image.jpg")  # classify an image
            >>> probs = results[0].probs  # get classification probabilities
            >>> top1_confidence = probs.top1conf  # get confidence of top 1 class
            >>> print(f"Top 1 class confidence: {top1_confidence.item():.4f}")
        """
        return self.data[self.top1]

    @property
    @lru_cache(maxsize=1)
    def top5conf(self):
        """
        Returns confidence scores for the top 5 classification predictions.

        This property retrieves the confidence scores corresponding to the top 5 class probabilities
        predicted by the model. It provides a quick way to access the most likely class predictions
        along with their associated confidence levels.

        Returns:
            (torch.Tensor | numpy.ndarray): A tensor or array containing the confidence scores for the
                top 5 predicted classes, sorted in descending order of probability.

        Examples:
            >>> results = model("image.jpg")
            >>> probs = results[0].probs
            >>> top5_conf = probs.top5conf
            >>> print(top5_conf)  # Prints confidence scores for top 5 classes
        """
        return self.data[self.top5]


class OBB(BaseTensor):
    """
    A class for storing and manipulating Oriented Bounding Boxes (OBB).

    This class provides functionality to handle oriented bounding boxes, including conversion between
    different formats, normalization, and access to various properties of the boxes.

    Attributes:
        data (torch.Tensor): The raw OBB tensor containing box coordinates and associated data.
        orig_shape (tuple): Original image size as (height, width).
        is_track (bool): Indicates whether tracking IDs are included in the box data.
        xywhr (torch.Tensor | numpy.ndarray): Boxes in [x_center, y_center, width, height, rotation] format.
        conf (torch.Tensor | numpy.ndarray): Confidence scores for each box.
        cls (torch.Tensor | numpy.ndarray): Class labels for each box.
        id (torch.Tensor | numpy.ndarray): Tracking IDs for each box, if available.
        xyxyxyxy (torch.Tensor | numpy.ndarray): Boxes in 8-point [x1, y1, x2, y2, x3, y3, x4, y4] format.
        xyxyxyxyn (torch.Tensor | numpy.ndarray): Normalized 8-point coordinates relative to orig_shape.
        xyxy (torch.Tensor | numpy.ndarray): Axis-aligned bounding boxes in [x1, y1, x2, y2] format.

    Methods:
        cpu(): Returns a copy of the OBB object with all tensors on CPU memory.
        numpy(): Returns a copy of the OBB object with all tensors as numpy arrays.
        cuda(): Returns a copy of the OBB object with all tensors on GPU memory.
        to(*args, **kwargs): Returns a copy of the OBB object with tensors on specified device and dtype.

    Examples:
        >>> boxes = torch.tensor([[100, 50, 150, 100, 30, 0.9, 0]])  # xywhr, conf, cls
        >>> obb = OBB(boxes, orig_shape=(480, 640))
        >>> print(obb.xyxyxyxy)
        >>> print(obb.conf)
        >>> print(obb.cls)
    """

    def __init__(self, boxes, orig_shape) -> None:
        """
        Initialize an OBB (Oriented Bounding Box) instance with oriented bounding box data and original image shape.

        This class stores and manipulates Oriented Bounding Boxes (OBB) for object detection tasks. It provides
        various properties and methods to access and transform the OBB data.

        Args:
            boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
                with shape (num_boxes, 7) or (num_boxes, 8). The last two columns contain confidence and class values.
                If present, the third last column contains track IDs, and the fifth column contains rotation.
            orig_shape (Tuple[int, int]): Original image size, in the format (height, width).

        Attributes:
            data (torch.Tensor | numpy.ndarray): The raw OBB tensor.
            orig_shape (Tuple[int, int]): The original image shape.
            is_track (bool): Whether the boxes include tracking IDs.

        Raises:
            AssertionError: If the number of values per box is not 7 or 8.

        Examples:
            >>> import torch
            >>> boxes = torch.rand(3, 7)  # 3 boxes with 7 values each
            >>> orig_shape = (640, 480)
            >>> obb = OBB(boxes, orig_shape)
            >>> print(obb.xywhr)  # Access the boxes in xywhr format
        """
        if boxes.ndim == 1:
            boxes = boxes[None, :]
        n = boxes.shape[-1]
        assert n in {7, 8}, f"expected 7 or 8 values but got {n}"  # xywh, rotation, track_id, conf, cls
        super().__init__(boxes, orig_shape)
        self.is_track = n == 8
        self.orig_shape = orig_shape

    @property
    def xywhr(self):
        """
        Returns boxes in [x_center, y_center, width, height, rotation] format.

        Returns:
            (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the oriented bounding boxes with format
                [x_center, y_center, width, height, rotation]. The shape is (N, 5) where N is the number of boxes.

        Examples:
            >>> results = model("image.jpg")
            >>> obb = results[0].obb
            >>> xywhr = obb.xywhr
            >>> print(xywhr.shape)
            torch.Size([3, 5])
        """
        return self.data[:, :5]

    @property
    def conf(self):
        """
        Returns the confidence scores for Oriented Bounding Boxes (OBBs).

        This property retrieves the confidence values associated with each OBB detection. The confidence score
        represents the model's certainty in the detection.

        Returns:
            (torch.Tensor | numpy.ndarray): A tensor or numpy array of shape (N,) containing confidence scores
                for N detections, where each score is in the range [0, 1].

        Examples:
            >>> results = model("image.jpg")
            >>> obb_result = results[0].obb
            >>> confidence_scores = obb_result.conf
            >>> print(confidence_scores)
        """
        return self.data[:, -2]

    @property
    def cls(self):
        """
        Returns the class values of the oriented bounding boxes.

        Returns:
            (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the class values for each oriented
                bounding box. The shape is (N,), where N is the number of boxes.

        Examples:
            >>> results = model("image.jpg")
            >>> result = results[0]
            >>> obb = result.obb
            >>> class_values = obb.cls
            >>> print(class_values)
        """
        return self.data[:, -1]

    @property
    def id(self):
        """
        Returns the tracking IDs of the oriented bounding boxes (if available).

        Returns:
            (torch.Tensor | numpy.ndarray | None): A tensor or numpy array containing the tracking IDs for each
                oriented bounding box. Returns None if tracking IDs are not available.

        Examples:
            >>> results = model("image.jpg", tracker=True)  # Run inference with tracking
            >>> for result in results:
            ...     if result.obb is not None:
            ...         track_ids = result.obb.id
            ...         if track_ids is not None:
            ...             print(f"Tracking IDs: {track_ids}")
        """
        return self.data[:, -3] if self.is_track else None

    @property
    @lru_cache(maxsize=2)
    def xyxyxyxy(self):
        """
        Converts OBB format to 8-point (xyxyxyxy) coordinate format for rotated bounding boxes.

        Returns:
            (torch.Tensor | numpy.ndarray): Rotated bounding boxes in xyxyxyxy format with shape (N, 4, 2), where N is
                the number of boxes. Each box is represented by 4 points (x, y), starting from the top-left corner and
                moving clockwise.

        Examples:
            >>> obb = OBB(torch.tensor([[100, 100, 50, 30, 0.5, 0.9, 0]]), orig_shape=(640, 640))
            >>> xyxyxyxy = obb.xyxyxyxy
            >>> print(xyxyxyxy.shape)
            torch.Size([1, 4, 2])
        """
        return ops.xywhr2xyxyxyxy(self.xywhr)

    @property
    @lru_cache(maxsize=2)
    def xyxyxyxyn(self):
        """
        Converts rotated bounding boxes to normalized xyxyxyxy format.

        Returns:
            (torch.Tensor | numpy.ndarray): Normalized rotated bounding boxes in xyxyxyxy format with shape (N, 4, 2),
                where N is the number of boxes. Each box is represented by 4 points (x, y), normalized relative to
                the original image dimensions.

        Examples:
            >>> obb = OBB(torch.rand(10, 7), orig_shape=(640, 480))  # 10 random OBBs
            >>> normalized_boxes = obb.xyxyxyxyn
            >>> print(normalized_boxes.shape)
            torch.Size([10, 4, 2])
        """
        xyxyxyxyn = self.xyxyxyxy.clone() if isinstance(self.xyxyxyxy, torch.Tensor) else np.copy(self.xyxyxyxy)
        xyxyxyxyn[..., 0] /= self.orig_shape[1]
        xyxyxyxyn[..., 1] /= self.orig_shape[0]
        return xyxyxyxyn

    @property
    @lru_cache(maxsize=2)
    def xyxy(self):
        """
        Converts oriented bounding boxes (OBB) to axis-aligned bounding boxes in xyxy format.

        This property calculates the minimal enclosing rectangle for each oriented bounding box and returns it in
        xyxy format (x1, y1, x2, y2). This is useful for operations that require axis-aligned bounding boxes, such
        as IoU calculation with non-rotated boxes.

        Returns:
            (torch.Tensor | numpy.ndarray): Axis-aligned bounding boxes in xyxy format with shape (N, 4), where N
                is the number of boxes. Each row contains [x1, y1, x2, y2] coordinates.

        Examples:
            >>> import torch
            >>> from ultralytics import YOLO
            >>> model = YOLO("yolov8n-obb.pt")
            >>> results = model("path/to/image.jpg")
            >>> for result in results:
            ...     obb = result.obb
            ...     if obb is not None:
            ...         xyxy_boxes = obb.xyxy
            ...         print(xyxy_boxes.shape)  # (N, 4)

        Notes:
            - This method approximates the OBB by its minimal enclosing rectangle.
            - The returned format is compatible with standard object detection metrics and visualization tools.
            - The property uses caching to improve performance for repeated access.
        """
        x = self.xyxyxyxy[..., 0]
        y = self.xyxyxyxy[..., 1]
        return (
            torch.stack([x.amin(1), y.amin(1), x.amax(1), y.amax(1)], -1)
            if isinstance(x, torch.Tensor)
            else np.stack([x.min(1), y.min(1), x.max(1), y.max(1)], -1)
        )